时间序列预测可以根据短期预测,长期预测,以及具体场景选用不同的方法,如ARMA、ARIMA、神经网络预测、SVM预测、灰色预测、模糊预测、组合预测法等等。所谓没有最好的模型,只有最适合的模型。至于哪一种模型能针对特定预测问题达到最高的精度,需要通过实验来证明。本文通过生成的随机数利用tensorflow的seq2seq模型进行单变量时间序列预测实验,目的是理解seq2seq的模型基础架构以及验证模型在非线性数据上的表达能力。这里暂时不考虑带Attention机制的模型,具体可以参考
Neural Machine Translation By Jointly Learning to Align and Translate
<https://arxiv.org/abs/1409.0473>。

最基础的Seq2Seq模型包含了三个部分,即Encoder、Decoder以及连接两者的中间状态向量,Encoder通过学习输入,将其编码成一个固定大小的状态向量S,继而将S传给Decoder,Decoder再通过对状态向量S的学习来进行输出。下图是encoder与decoder均基于LSTM的模型。

首先我们导入需要的包:
import tensorflow as tf import numpy as np import random import math from
matplotlibimport pyplot as plt import os import copy
1.数据准备
首先,我们生成一系列没有噪音的样本:
x = np.linspace(0, 30, 105) y = 2 * np.sin(x) l1, = plt.plot(x[:85], y[:85],
'y', label = 'training samples') l2, = plt.plot(x[85:], y[85:105], 'c--', label
='test samples') plt.legend(handles = [l1, l2], loc = 'upper left') plt.show()

为了模拟真实世界的数据,我们添加一些随机噪音:
train_y = y.copy() noise_factor = 0.5 train_y += np.random.randn(105) *
noise_factor l1, = plt.plot(x[:85], train_y[:85], 'yo', label = 'training
samples') plt.plot(x[:85], y[:85], 'y:') l2, = plt.plot(x[85:], train_y[85:],
'co', label = 'test samples') plt.plot(x[85:], y[85:], 'c:') plt.legend(handles
= [l1, l2], loc = 'upper left') plt.show()

然后,我们设置输入输出的序列长度,并生成训练样本和测试样本:
input_seq_len = 15 output_seq_len = 20 x = np.linspace(0, 30, 105)
train_data_x = x[:85] def true_signal(x): y = 2 * np.sin(x) return y def
noise_func(x, noise_factor = 1): return np.random.randn(len(x)) * noise_factor
def generate_y_values(x): return true_signal(x) + noise_func(x) def
generate_train_samples(x = train_data_x, batch_size = 10, input_seq_len =
input_seq_len, output_seq_len = output_seq_len): total_start_points = len(x) -
input_seq_len - output_seq_len start_x_idx =
np.random.choice(range(total_start_points), batch_size) input_seq_x =
[x[i:(i+input_seq_len)]for i in start_x_idx] output_seq_x =
[x[(i+input_seq_len):(i+input_seq_len+output_seq_len)]for i in start_x_idx]
input_seq_y = [generate_y_values(x)for x in input_seq_x] output_seq_y =
[generate_y_values(x)for x in output_seq_x] #batch_x =
np.array([[true_signal()]]) return np.array(input_seq_y), np.array(output_seq_y)
input_seq, output_seq= generate_train_samples(batch_size=10)
对含有噪音的数据进行可视化:
results = [] for i in range(100): temp = generate_y_values(x)
results.append(temp) results = np.array(results) for i in range(100): l1, =
plt.plot(results[i].reshape(105, -1), 'co', lw = 0.1, alpha = 0.05, label =
'noisy training data') l2, = plt.plot(true_signal(x), 'm', label = 'hidden true
signal') plt.legend(handles = [l1, l2], loc = 'lower left') plt.show()


2.建立基本的RNN模型
2.1参数设置
## Parameters learning_rate = 0.01 lambda_l2_reg = 0.003 ## Network Parameters
# length of input signals input_seq_len = 15 # length of output signals
output_seq_len =20 # size of LSTM Cell hidden_dim = 64 # num of input signals
input_dim =1 # num of output signals output_dim = 1 # num of stacked lstm layers
num_stacked_layers =2 # gradient clipping - to avoid gradient exploding
GRADIENT_CLIPPING =2.5
2.2 模型架构
这里的seq2seq模型基本与tensorflow在github中提供的模型
<https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/legacy_seq2seq/python/ops/seq2seq.py>
一致。
def build_graph(feed_previous = False): tf.reset_default_graph() global_step =
tf.Variable( initial_value=0, name="global_step", trainable=False,
collections=[tf.GraphKeys.GLOBAL_STEP, tf.GraphKeys.GLOBAL_VARIABLES]) weights
= {'out': tf.get_variable('Weights_out', \ shape = [hidden_dim, output_dim], \
dtype = tf.float32, \ initializer = tf.truncated_normal_initializer()), }
biases = {'out': tf.get_variable('Biases_out', \ shape = [output_dim], \ dtype
= tf.float32, \ initializer = tf.constant_initializer(0.)), } with
tf.variable_scope('Seq2seq'): # Encoder: inputs enc_inp = [
tf.placeholder(tf.float32, shape=(None, input_dim), name="inp_{}".format(t)) for
tin range(input_seq_len) ] # Decoder: target outputs target_seq = [
tf.placeholder(tf.float32, shape=(None, output_dim), name="y".format(t)) for t
in range(output_seq_len) ] # Give a "GO" token to the decoder. # If dec_inp are
fed into decoder as inputs, this is 'guided' training; otherwise only the #
first element will be fed as decoder input which is then 'un-guided' dec_inp =
[ tf.zeros_like(target_seq[0], dtype=tf.float32, name="GO") ] + target_seq[:-1]
with tf.variable_scope('LSTMCell'): cells = [] for i in
range(num_stacked_layers):with tf.variable_scope('RNN_{}'.format(i)):
cells.append(tf.contrib.rnn.LSTMCell(hidden_dim)) cell =
tf.contrib.rnn.MultiRNNCell(cells)def _rnn_decoder(decoder_inputs,
initial_state, cell, loop_function=None, scope=None): """RNN decoder for the
sequence-to-sequence model. Args: decoder_inputs: A list of 2D Tensors
[batch_size x input_size]. initial_state: 2D Tensor with shape [batch_size x
cell.state_size]. cell: rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to the i-th output in
order to generate the i+1-st input, and decoder_inputs will be ignored, except
for the first element ("GO" symbol). This can be used for decoding, but also
for training to emulate http://arxiv.org/abs/1506.03099. Signature --
loop_function(prev, i) = next * prev is a 2D Tensor of shape [batch_size x
output_size], * i is an integer, the step number (when advanced control is
needed), * next is a 2D Tensor of shape [batch_size x input_size]. scope:
VariableScope for the created subgraph; defaults to "rnn_decoder". Returns: A
tuple of the form (outputs, state), where: outputs: A list of the same length
as decoder_inputs of 2D Tensors with shape [batch_size x output_size]
containing generated outputs. state: The state of each cell at the final
time-step. It is a 2D Tensor of shape [batch_size x cell.state_size]. (Note
that in some cases, like basic RNN cell or GRU cell, outputs and states can be
the same. They are different for LSTM cells though.) """ with
variable_scope.variable_scope(scopeor "rnn_decoder"): state = initial_state
outputs = [] prev =None for i, inp in enumerate(decoder_inputs): if
loop_functionis not None and prev is not None: with
variable_scope.variable_scope("loop_function", reuse=True): inp =
loop_function(prev, i)if i > 0:
variable_scope.get_variable_scope().reuse_variables() output, state = cell(inp,
state) outputs.append(output)if loop_function is not None: prev = output return
outputs, statedef _basic_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
feed_previous, dtype=dtypes.float32, scope=None): """Basic RNN
sequence-to-sequence model. This model first runs an RNN to encode
encoder_inputs into a state vector, then runs decoder, initialized with the
last encoder state, on decoder_inputs. Encoder and decoder use the same RNN
cell type, but don't share parameters. Args: encoder_inputs: A list of 2D
Tensors [batch_size x input_size]. decoder_inputs: A list of 2D Tensors
[batch_size x input_size]. feed_previous: Boolean; if True, only the first of
decoder_inputs will be used (the "GO" symbol), all other inputs will be
generated by the previous decoder output using _loop_function below. If False,
decoder_inputs are used as given (the standard decoder case). dtype: The dtype
of the initial state of the RNN cell (default: tf.float32). scope:
VariableScope for the created subgraph; default: "basic_rnn_seq2seq". Returns:
A tuple of the form (outputs, state), where: outputs: A list of the same length
as decoder_inputs of 2D Tensors with shape [batch_size x output_size]
containing the generated outputs. state: The state of each decoder cell in the
final time-step. It is a 2D Tensor of shape [batch_size x cell.state_size]. """
with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"): enc_cell =
copy.deepcopy(cell) _, enc_state = rnn.static_rnn(enc_cell, encoder_inputs,
dtype=dtype)if feed_previous: return _rnn_decoder(decoder_inputs, enc_state,
cell, _loop_function)else: return _rnn_decoder(decoder_inputs, enc_state, cell)
def _loop_function(prev, _): '''Naive implementation of loop function for
_rnn_decoder. Transform prev from dimension [batch_size x hidden_dim] to
[batch_size x output_dim], which will be used as decoder input of next time
step ''' return tf.matmul(prev, weights['out']) + biases['out'] dec_outputs,
dec_memory = _basic_rnn_seq2seq( enc_inp, dec_inp, cell, feed_previous =
feed_previous ) reshaped_outputs = [tf.matmul(i, weights['out']) + biases['out']
for i in dec_outputs] # Training loss and optimizer with tf.variable_scope(
'Loss'): # L2 loss output_loss = 0 for _y, _Y in zip(reshaped_outputs,
target_seq): output_loss += tf.reduce_mean(tf.pow(_y - _Y,2)) # L2
regularization for weights and biases reg_loss = 0 for tf_var in
tf.trainable_variables():if 'Biases_' in tf_var.name or 'Weights_' in
tf_var.name: reg_loss += tf.reduce_mean(tf.nn.l2_loss(tf_var)) loss =
output_loss + lambda_l2_reg * reg_losswith tf.variable_scope('Optimizer'):
optimizer = tf.contrib.layers.optimize_loss( loss=loss,
learning_rate=learning_rate, global_step=global_step, optimizer='Adam',
clip_gradients=GRADIENT_CLIPPING) saver = tf.train.Saverreturn dict( enc_inp =
enc_inp, target_seq = target_seq, train_op = optimizer, loss=loss, saver =
saver, reshaped_outputs = reshaped_outputs, )
2.3模型训练
在这里设置了batch size为16,迭代次数为100。
total_iteractions = 100 batch_size = 16 KEEP_RATE = 0.5 train_losses = []
val_losses = [] x = np.linspace(0, 30, 105) train_data_x = x[:85] rnn_model =
build_graph(feed_previous=False) saver = tf.train.Saver() init =
tf.global_variables_initializer()with tf.Session() as sess: sess.run(init) for i
in range(total_iteractions): batch_input, batch_output =
generate_train_samples(batch_size=batch_size) feed_dict = {rnn_model['enc_inp'
][t]: batch_input[:,t].reshape(-1,input_dim) for t in range(input_seq_len)}
feed_dict.update({rnn_model['target_seq'][t]: batch_output[:,t].reshape(-1
,output_dim)for t in range(output_seq_len)}) _, loss_t = sess.run([rnn_model[
'train_op'], rnn_model['loss']], feed_dict) print(loss_t) temp_saver =
rnn_model['saver']() save_path = temp_saver.save(sess, os.path.join('./',
'univariate_ts_model0')) print("Checkpoint saved at: ", save_path)
可见输出的loss呈降低的趋势:
57.3053 32.0934 52.935 37.3215 37.121 36.0812 24.0727 27.5016 27.8621 29.2104
25.2804 26.4493 24.8914 26.5799 24.9871 22.0373 24.2079 23.1084 24.7991 24.0452
25.4788 23.0237 22.9508 25.1181 27.6942 20.5367 21.2899 28.4336 21.9943 21.8568
26.5138 22.5602 21.1466 22.0203 25.0466 21.0588 23.0585 22.5311 26.1076 21.897
20.694 21.459 21.1082 20.9176 21.8146 21.0299 22.3609 20.4057 21.0788 23.2162
24.8537 22.1202 20.7458 22.5411 21.4423 23.8266 23.3528 22.5934 20.2631 21.4907
19.6011 20.5983 23.4366 25.6377 23.4134 20.6773 18.802 25.341 22.935 21.8413
22.1599 23.4422 24.0427 22.8963 22.336 20.397 22.0162 21.2389 20.5336 21.0605
22.8863 22.3839 22.1059 22.0032 20.505 23.4216 26.9626 22.8875 21.9535 22.4898
20.1734 19.936 19.7218 22.7191 20.2067 19.4964 24.0207 21.0039 22.38 20.1875
Checkpoint savedat: ./univariate_ts_model0
3.预测
我们将模型用在测试集中进行预测
test_seq_input = true_signal(train_data_x[-15:]) rnn_model =
build_graph(feed_previous=True) init = tf.global_variables_initializer() with
tf.Session()as sess: sess.run(init) saver = rnn_model['saver']().restore(sess,
os.path.join('./', 'univariate_ts_model0')) feed_dict = {rnn_model['enc_inp'
][t]: test_seq_input[t].reshape(1,1) for t in range(input_seq_len)}
feed_dict.update({rnn_model['target_seq'][t]: np.zeros([1, output_dim]) for t in
range(output_seq_len)}) final_preds = sess.run(rnn_model['reshaped_outputs'],
feed_dict) final_preds = np.concatenate(final_preds, axis =1)
得到的预测效果如下:
l1, = plt.plot(range(85), true_signal(train_data_x[:85]), label = 'Training
truth') l2, = plt.plot(range(85, 105), y[85:], 'yo', label = 'Test truth') l3,
= plt.plot(range(85, 105), final_preds.reshape(-1), 'ro', label = 'Test
predictions') plt.legend(handles = [l1, l2, l3], loc ='lower left') plt.show()


references:

https://weiminwang.blog/2017/09/29/multivariate-time-series-forecast-using-seq2seq-in-tensorflow/

<https://weiminwang.blog/2017/09/29/multivariate-time-series-forecast-using-seq2seq-in-tensorflow/>
http://baijiahao.baidu.com/s?id=1571869641858839&wfr=spider&for=pc
<http://baijiahao.baidu.com/s?id=1571869641858839&wfr=spider&for=pc>
https://blog.csdn.net/leadai/article/details/78809788
<https://blog.csdn.net/leadai/article/details/78809788>
https://www.zhihu.com/question/21229371
<https://www.zhihu.com/question/21229371>
https://blog.csdn.net/thriving_fcl/article/details/74853556
<https://blog.csdn.net/thriving_fcl/article/details/74853556>

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信