1.数据读取
import pandas as pd import numpy as np import pymongo data =
pd.DataFrame(pd.read_excel('000.xlsx', index=False)) client =
pymongo.MongoClient("mongodb://XX:[email protected]:2018",connect=False) db =
client["test"] table = db["python"] df = pd.DataFrame(list(table.find())) 
可以从excel,csv,mongo数据之类的读取数据

2.遍历
for i in range(data.index.max()): if any([ 'missing' in data.loc[i,:].values,
data.loc[i,'hour'] not in range(25), ]): print('已删除存在异常值 %s 行数据'%i)
data.drop([i],inplace=True) for i in range(0,len(df)): info =
df.loc[i].to_dict()
3. 去空(NA)

 

3.1直接去除
from numpy import nan as NA data=Series([1,NA,3.5,NA,7]) print(data.dropna())
#至少2个NA才删除 print(data.dropna(thresh=2))
3.2 用中位数或者平均数进行填充
df = df.fillna(df.median()) print(df.fillna(df.mean()))
4.对字段进行处理

 
def get_salary(salary): s = 0 if "-" in salary: for part in salary.split("-"):
if "万" in part: q = float(part[:-1]) * 10000 else: q = float(part[:-1]) * 1000
s += q return int(s/2.0) else: return np.nan df["salary"] =
df["salary"].apply(get_salary) df.head()
df["company"]=df["company"].apply(lambda x :x.split("/")[0].strip('"'))
5.删除重复

 
df["company"].drop_duplicates()
6.只留部分
df.loc[:,["address","company"]] df_c = df_c.iloc[:,[4,5]] del
data["name_grade"] del data["info_grade"]
7. 排序
df.sort_values(by='col1', ascending=False)
8. isin
mask = df['A'].isin([1]) #括号中必须为list



9. merge
df1 = pd.DataFrame({'name':['kate', 'herz', 'catherine', 'sally'], 'age':[25,
28, 39, 35]}) df2 = pd.DataFrame({'name_t':['kate', 'herz', 'catherine',
'sally'], 'score':[70, 60, 90, 100]}) print(pd.merge(df1, df2, left_on="name",
right_on="name_t").drop('name_t', axis=1))



10.保存为csv,或者到mongo
df["company"].drop_duplicates().to_csv("company.csv",encoding="utf-8")
db[MONGO_TABLE].insert(row.to_dict()) 
http://www.codeblogbt.com/archives/102061
<http://www.codeblogbt.com/archives/102061>

 

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信