写在前面:

本文代码来自:
https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/5_DataManagement

<https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/5_DataManagement>

本博客的目的是方便日后学习,如有需要可以通过上面的地址学习。
""" Build an Image Dataset in TensorFlow. For this example, you need to make
your own set of images (JPEG). We will show 2 different ways to build that
dataset: - From a root folder, that will have a sub-folder containing images
for each class ``` ROOT_FOLDER |-------- SUBFOLDER (CLASS 0) | | | | -----
image1.jpg | | ----- image2.jpg | | ----- etc... | |-------- SUBFOLDER (CLASS
1) | | | | ----- image1.jpg | | ----- image2.jpg | | ----- etc... ``` - From a
plain text file, that will list all images with their class ID: ```
/path/to/image/1.jpg CLASS_ID /path/to/image/2.jpg CLASS_ID
/path/to/image/3.jpg CLASS_ID /path/to/image/4.jpg CLASS_ID etc... ``` Below,
there are some parameters that you need to change (Marked 'CHANGE HERE'), such
as the dataset path. Author: Aymeric Damien Project:
https://github.com/aymericdamien/TensorFlow-Examples/ """ from __future__
import print_function import tensorflow as tf import os # Dataset Parameters -
CHANGE HERE MODE = 'folder' # or 'file', if you choose a plain text file (see
above). DATASET_PATH = '/path/to/dataset/' # the dataset file or root folder
path. # Image Parameters N_CLASSES = 2 # CHANGE HERE, total number of classes
IMG_HEIGHT = 64 # CHANGE HERE, the image height to be resized to IMG_WIDTH = 64
# CHANGE HERE, the image width to be resized to CHANNELS = 3 # The 3 color
channels, change to 1 if grayscale # Reading the dataset # 2 modes: 'file' or
'folder' def read_images(dataset_path, mode, batch_size): imagepaths, labels =
list(), list() if mode == 'file': # Read dataset file data = open(dataset_path,
'r').read().splitlines() for d in data: imagepaths.append(d.split(' ')[0])
labels.append(int(d.split(' ')[1])) elif mode == 'folder': # An ID will be
affected to each sub-folders by alphabetical order label = 0 # List the
directory try: # Python 2 classes = sorted(os.walk(dataset_path).next()[1])
except Exception: # Python 3 classes =
sorted(os.walk(dataset_path).__next__()[1]) # List each sub-directory (the
classes) for c in classes: c_dir = os.path.join(dataset_path, c) try: # Python
2 walk = os.walk(c_dir).next() except Exception: # Python 3 walk =
os.walk(c_dir).__next__() # Add each image to the training set for sample in
walk[2]: # Only keeps jpeg images if sample.endswith('.jpg') or
sample.endswith('.jpeg'): imagepaths.append(os.path.join(c_dir, sample))
labels.append(label) label += 1 else: raise Exception("Unknown mode.") #
Convert to Tensor imagepaths = tf.convert_to_tensor(imagepaths,
dtype=tf.string) labels = tf.convert_to_tensor(labels, dtype=tf.int32) # Build
a TF Queue, shuffle data image, label =
tf.train.slice_input_producer([imagepaths, labels], shuffle=True) # Read images
from disk image = tf.read_file(image) image = tf.image.decode_jpeg(image,
channels=CHANNELS) # Resize images to a common size image =
tf.image.resize_images(image, [IMG_HEIGHT, IMG_WIDTH]) # Normalize image =
image * 1.0/127.5 - 1.0 # Create batches X, Y = tf.train.batch([image, label],
batch_size=batch_size, capacity=batch_size * 8, num_threads=4) return X, Y #
----------------------------------------------- # THIS IS A CLASSIC CNN (see
examples, section 3) # ----------------------------------------------- # Note
that a few elements have changed (usage of queues). # Parameters learning_rate
= 0.001 num_steps = 10000 batch_size = 128 display_step = 100 # Network
Parameters dropout = 0.75 # Dropout, probability to keep units # Build the data
input X, Y = read_images(DATASET_PATH, MODE, batch_size) # Create model def
conv_net(x, n_classes, dropout, reuse, is_training): # Define a scope for
reusing the variables with tf.variable_scope('ConvNet', reuse=reuse): #
Convolution Layer with 32 filters and a kernel size of 5 conv1 =
tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu) # Max Pooling (down-sampling)
with strides of 2 and kernel size of 2 conv1 = tf.layers.max_pooling2d(conv1,
2, 2) # Convolution Layer with 32 filters and a kernel size of 5 conv2 =
tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu) # Max Pooling
(down-sampling) with strides of 2 and kernel size of 2 conv2 =
tf.layers.max_pooling2d(conv2, 2, 2) # Flatten the data to a 1-D vector for the
fully connected layer fc1 = tf.contrib.layers.flatten(conv2) # Fully connected
layer (in contrib folder for now) fc1 = tf.layers.dense(fc1, 1024) # Apply
Dropout (if is_training is False, dropout is not applied) fc1 =
tf.layers.dropout(fc1, rate=dropout, training=is_training) # Output layer,
class prediction out = tf.layers.dense(fc1, n_classes) # Because
'softmax_cross_entropy_with_logits' already apply softmax, # we only apply
softmax to testing network out = tf.nn.softmax(out) if not is_training else out
return out # Because Dropout have different behavior at training and prediction
time, we # need to create 2 distinct computation graphs that share the same
weights. # Create a graph for training logits_train = conv_net(X, N_CLASSES,
dropout, reuse=False, is_training=True) # Create another graph for testing that
reuse the same weights logits_test = conv_net(X, N_CLASSES, dropout,
reuse=True, is_training=False) # Define loss and optimizer (with train logits,
for dropout to take effect) loss_op =
tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits_train, labels=Y)) optimizer =
tf.train.AdamOptimizer(learning_rate=learning_rate) train_op =
optimizer.minimize(loss_op) # Evaluate model (with test logits, for dropout to
be disabled) correct_pred = tf.equal(tf.argmax(logits_test, 1), tf.cast(Y,
tf.int64)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) #
Initialize the variables (i.e. assign their default value) init =
tf.global_variables_initializer() # Saver object saver = tf.train.Saver() #
Start training with tf.Session() as sess: # Run the initializer sess.run(init)
# Start the data queue tf.train.start_queue_runners() # Training cycle for step
in range(1, num_steps+1): if step % display_step == 0: # Run optimization and
calculate batch loss and accuracy _, loss, acc = sess.run([train_op, loss_op,
accuracy]) print("Step " + str(step) + ", Minibatch Loss= " + \
"{:.4f}".format(loss) + ", Training Accuracy= " + \ "{:.3f}".format(acc)) else:
# Only run the optimization op (backprop) sess.run(train_op)
print("Optimization Finished!") # Save your model saver.save(sess,
'my_tf_model') """ TensorFlow Dataset API. In this example, we will show how to
load numpy array data into the new TensorFlow 'Dataset' API. The Dataset API
implements an optimized data pipeline with queues, that make data processing
and training faster (especially on GPU). Author: Aymeric Damien Project:
https://github.com/aymericdamien/TensorFlow-Examples/ """ from __future__
import print_function import tensorflow as tf # Import MNIST data (Numpy
format) from tensorflow.examples.tutorials.mnist import input_data mnist =
input_data.read_data_sets("/tmp/data/", one_hot=True) # Parameters
learning_rate = 0.001 num_steps = 2000 batch_size = 128 display_step = 100 #
Network Parameters n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits) dropout = 0.75 # Dropout,
probability to keep units sess = tf.Session() # Create a dataset tensor from
the images and the labels dataset = tf.contrib.data.Dataset.from_tensor_slices(
(mnist.train.images, mnist.train.labels)) # Create batches of data dataset =
dataset.batch(batch_size) # Create an iterator, to go over the dataset iterator
= dataset.make_initializable_iterator() # It is better to use 2 placeholders,
to avoid to load all data into memory, # and avoid the 2Gb restriction length
of a tensor. _data = tf.placeholder(tf.float32, [None, n_input]) _labels =
tf.placeholder(tf.float32, [None, n_classes]) # Initialize the iterator
sess.run(iterator.initializer, feed_dict={_data: mnist.train.images, _labels:
mnist.train.labels}) # Neural Net Input X, Y = iterator.get_next() #
----------------------------------------------- # THIS IS A CLASSIC CNN (see
examples, section 3) # ----------------------------------------------- # Note
that a few elements have changed (usage of sess run). # Create model def
conv_net(x, n_classes, dropout, reuse, is_training): # Define a scope for
reusing the variables with tf.variable_scope('ConvNet', reuse=reuse): # MNIST
data input is a 1-D vector of 784 features (28*28 pixels) # Reshape to match
picture format [Height x Width x Channel] # Tensor input become 4-D: [Batch
Size, Height, Width, Channel] x = tf.reshape(x, shape=[-1, 28, 28, 1]) #
Convolution Layer with 32 filters and a kernel size of 5 conv1 =
tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu) # Max Pooling (down-sampling)
with strides of 2 and kernel size of 2 conv1 = tf.layers.max_pooling2d(conv1,
2, 2) # Convolution Layer with 32 filters and a kernel size of 5 conv2 =
tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu) # Max Pooling
(down-sampling) with strides of 2 and kernel size of 2 conv2 =
tf.layers.max_pooling2d(conv2, 2, 2) # Flatten the data to a 1-D vector for the
fully connected layer fc1 = tf.contrib.layers.flatten(conv2) # Fully connected
layer (in contrib folder for now) fc1 = tf.layers.dense(fc1, 1024) # Apply
Dropout (if is_training is False, dropout is not applied) fc1 =
tf.layers.dropout(fc1, rate=dropout, training=is_training) # Output layer,
class prediction out = tf.layers.dense(fc1, n_classes) # Because
'softmax_cross_entropy_with_logits' already apply softmax, # we only apply
softmax to testing network out = tf.nn.softmax(out) if not is_training else out
return out # Because Dropout have different behavior at training and prediction
time, we # need to create 2 distinct computation graphs that share the same
weights. # Create a graph for training logits_train = conv_net(X, n_classes,
dropout, reuse=False, is_training=True) # Create another graph for testing that
reuse the same weights, but has # different behavior for 'dropout' (not
applied). logits_test = conv_net(X, n_classes, dropout, reuse=True,
is_training=False) # Define loss and optimizer (with train logits, for dropout
to take effect) loss_op =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( logits=logits_train,
labels=Y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op) # Evaluate model (with test logits, for
dropout to be disabled) correct_pred = tf.equal(tf.argmax(logits_test, 1),
tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) #
Initialize the variables (i.e. assign their default value) init =
tf.global_variables_initializer() # Run the initializer sess.run(init) #
Training cycle for step in range(1, num_steps + 1): try: # Run optimization
sess.run(train_op) except tf.errors.OutOfRangeError: # Reload the iterator when
it reaches the end of the dataset sess.run(iterator.initializer,
feed_dict={_data: mnist.train.images, _labels: mnist.train.labels})
sess.run(train_op) if step % display_step == 0 or step == 1: # Calculate batch
loss and accuracy # (note that this consume a new batch of data) loss, acc =
sess.run([loss_op, accuracy]) print("Step " + str(step) + ", Minibatch Loss= "
+ \ "{:.4f}".format(loss) + ", Training Accuracy= " + \ "{:.3f}".format(acc))
print("Optimization Finished!")
 

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信