上一篇文章已经制作好VOC数据集,这一节把VOC数据集转化为Tensorflow统一的数据格式。代码如下,参考于SSD-Tensorflow代码:https://github.com/balancap/SSD-Tensorflow
其实就是把几个文件整合到一块(tf_convert_data.py、pascalvoc_to_tfrecords.py、dataset_utils.py和pascalvoc_common.py),把参数写到文件内,直接run即可,注意修改datadir和outdir路径。
# -*- coding: utf-8 -*- """ Created on Thu May 24 17:03:43 2018 @author: 流羽秋
""" import os import sys import random import numpy as np import tensorflow as
tf import xml.etree.ElementTree as ET #操作xml文件 #我的标签定义只有两类,根据自己的图片而定 VOC_LABELS
= { 'none': (0, 'Background'), 'dust': (1, 'Dust') } # 图片和标签存放的文件夹.
DIRECTORY_ANNOTATIONS = 'Annotations/' DIRECTORY_IMAGES = 'JPEGImages/' # 随机种子.
RANDOM_SEED = 4242 SAMPLES_PER_FILES = 200 #每个文件的样本数 #生成整数型,浮点型和字符串型的属性 def
int64_feature(value): if not isinstance(value, list): value = [value] return
tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def
float_feature(value): if not isinstance(value, list): value = [value] return
tf.train.Feature(float_list=tf.train.FloatList(value=value)) def
bytes_feature(value): if not isinstance(value, list): value = [value] return
tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) #图片处理 def
_process_image(directory, name): # Read the image file. filename = directory +
DIRECTORY_IMAGES + name + '.jpg' image_data = tf.gfile.FastGFile(filename,
'rb').read() # Read the XML annotation file. filename = os.path.join(directory,
DIRECTORY_ANNOTATIONS, name + '.xml') tree = ET.parse(filename) root =
tree.getroot() # Image shape. size = root.find('size') shape =
[int(size.find('height').text), int(size.find('width').text),
int(size.find('depth').text)] # Find annotations. bboxes = [] labels = []
labels_text = [] difficult = [] truncated = [] for obj in
root.findall('object'): label = obj.find('name').text
labels.append(int(VOC_LABELS[label][0]))
labels_text.append(label.encode('ascii')) #变为ascii格式 if obj.find('difficult'):
difficult.append(int(obj.find('difficult').text)) else: difficult.append(0) if
obj.find('truncated'): truncated.append(int(obj.find('truncated').text)) else:
truncated.append(0) bbox = obj.find('bndbox') a=float(bbox.find('ymin').text) /
shape[0] b=float(bbox.find('xmin').text) / shape[1]
a1=float(bbox.find('ymax').text) / shape[0] b1=float(bbox.find('xmax').text) /
shape[1] a_e=a1-a b_e=b1-b if abs(a_e)<1 and abs(b_e)<1:
bboxes.append((a,b,a1,b1)) return image_data, shape, bboxes, labels,
labels_text, difficult, truncated #转化样例 def _convert_to_example(image_data,
labels, labels_text, bboxes, shape, difficult, truncated): xmin = [] ymin = []
xmax = [] ymax = [] for b in bboxes: assert len(b) == 4 # pylint:
disable=expression-not-assigned [l.append(point) for l, point in zip([ymin,
xmin, ymax, xmax], b)] # pylint: enable=expression-not-assigned image_format =
b'JPEG' example = tf.train.Example(features=tf.train.Features(feature={
'image/height': int64_feature(shape[0]), 'image/width':
int64_feature(shape[1]), 'image/channels': int64_feature(shape[2]),
'image/shape': int64_feature(shape), 'image/object/bbox/xmin':
float_feature(xmin), 'image/object/bbox/xmax': float_feature(xmax),
'image/object/bbox/ymin': float_feature(ymin), 'image/object/bbox/ymax':
float_feature(ymax), 'image/object/bbox/label': int64_feature(labels),
'image/object/bbox/label_text': bytes_feature(labels_text),
'image/object/bbox/difficult': int64_feature(difficult),
'image/object/bbox/truncated': int64_feature(truncated), 'image/format':
bytes_feature(image_format), 'image/encoded': bytes_feature(image_data)}))
return example #增加到tfrecord def _add_to_tfrecord(dataset_dir, name,
tfrecord_writer): image_data, shape, bboxes, labels, labels_text, difficult,
truncated = \ _process_image(dataset_dir, name) example =
_convert_to_example(image_data, labels, labels_text, bboxes, shape, difficult,
truncated) tfrecord_writer.write(example.SerializeToString()) #name为转化文件的前缀 def
_get_output_filename(output_dir, name, idx): return '%s/%s_%03d.tfrecord' %
(output_dir, name, idx) def run(dataset_dir, output_dir, name='voc_train',
shuffling=False): if not tf.gfile.Exists(dataset_dir):
tf.gfile.MakeDirs(dataset_dir) path = os.path.join(dataset_dir,
DIRECTORY_ANNOTATIONS) filenames = sorted(os.listdir(path)) #排序 if shuffling:
random.seed(RANDOM_SEED) random.shuffle(filenames) i = 0 fidx = 0 while i <
len(filenames): # Open new TFRecord file. tf_filename =
_get_output_filename(output_dir, name, fidx) with
tf.python_io.TFRecordWriter(tf_filename) as tfrecord_writer: j = 0 while i <
len(filenames) and j < SAMPLES_PER_FILES: sys.stdout.write(' Converting image
%d/%d \n' % (i+1, len(filenames)))#终端打印,类似print sys.stdout.flush() #缓冲 filename
= filenames[i] img_name = filename[:-4] _add_to_tfrecord(dataset_dir, img_name,
tfrecord_writer) i += 1 j += 1 fidx += 1 print('\nFinished converting the
Pascal VOC dataset!') #原数据集路径,输出路径以及输出文件名 dataset_dir="./VOC2007/"
output_dir="./TFRecords" name="voc_train" def main(_): run(dataset_dir,
output_dir,name) if __name__ == '__main__': tf.app.run()
另附自己标记好的烟雾VOC格式数据集:链接:https://pan.baidu.com/s/1ggTriIX_QyHjo1LveCs1nQ 密码:5j0r
热门工具 换一换