计算图像间的相似性可以使用欧氏距离、余弦相似度/作为度量,前者强调点的思想,后者注重线的思想。

欧氏距离

欧式距离/Euclidean Distance即n维空间中两个点之间的实际距离。已知两个点A=(a1,a2,...an),B=(b1,b2,...,bn)A=
(a1,a2,...an),B=(b1,b2,...,bn),则AB间的距离为:
d(A,B)=[∑(ai−bi)2]−−−−−−−−−−−√(i=1,2,...,n)d(A,B)=[∑(ai−bi)2](i=1,2,...,n)
同样可以利用欧式距离计算图像的相似度,欧式距离越小相似度越大。

计算欧氏距离:
double euclidean_distance(Mat baseImg, Mat targetImg) { double sumDescriptor =
0; for (int i = 0; i < baseImg.cols; i++) { double numBase = abs(baseImg.at<
float>(0, i)); double numTarget = abs(targetImg.at<float>(0, i)); sumDescriptor
+=pow(numBase-numTarget, 2); } double simility = sqrt(sumDescriptor); return
simility; }
汉明距离

汉明距离/Hamming
Distance也能用来计算两个向量的相似度;即通过比较向量每一位是否相同,若不同则汉明距离加1,这样得到汉明距离。向量相似度越高,对应的汉明距离越小。如10001001和10110001有3位不同。

余弦相似度

余弦相似度是利用两个向量之间的夹角的余弦值来衡量两个向量之间的余弦相似度。两个向量越相似夹角越小,余弦值越接近1。
在n维空间中,对于向量A=(a1,a2,...an),B=(b1,b2,...,bn)A=(a1,a2,...an),B=(b1,b2,...,bn)
,其余弦值为:
cosθ=∑n1(ai×bi)∑n1a2i√×∑n1b2i√cosθ=∑1n(ai×bi)∑1nai2×∑1nbi2
double cos_distance(Mat baseImg, Mat targetImg) { double squSumB = 0; double
squSumT =0; double innerPro = 0; for (int i = 0; i < baseImg.cols; i++) { double
numBase =abs(baseImg.at<float>(0, i)); double numTarget = abs(targetImg.at<
float>(0, i)); squSumB = squSumB + numBase*numBase; squSumT = squSumT +
numTarget*numTarget; innerPro = innerPro + numBase*numTarget; }double modB =
sqrt(squSumB); double modT = sqrt(squSumT); double simility = innerPro /
(modB*modT);return simility; }

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信