MNIST手写数字识别

Matlab代码:
%Neural Networks Codes will be run on this part tic
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clc
clear all pic1=imread('8.png'); pic1=rgb2gray(pic1); % pic=255-pic;
[a,b]=size(pic1); for i=1:1:a for j=1:1:b if pic1(i,j)==0 up=i; break end end
end for i=a:-1:1 for j=1:1:b if pic1(i,j)==0 down=i; break end end end for
j=1:1:b for i=1:1:a if pic1(i,j)==0 left=j; break end end end for j=b:-1:1 for
i=1:1:a if pic1(i,j)==0 right=j; break end end end
pic=pic1(down:up,right:left); imshow(pic) pic=imresize(pic,[28 28]); %
size(pic); pic1=1-double(reshape(pic,784,1))/255;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%加载待识别图像 image =
loadMNISTImages('train-images'); % 加载样本图像共60000,size(image)=784*60000 label =
loadMNISTLabels('train-labels');%加载样本图像对应标签
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
label1=zeros(60000,10); j=0; for i=1:1:60000     j=label(i)+1;
    label1(i,j)=1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%=训练样本
PR=minmax(image); bpnet=newff(PR,[30 10],{'tansig', 'tansig'}, 'traingd',
'learngdm'); net.epoch=100; net.trainParam.epochs=10;%允许最大训练步数
net.trainParam.goal=0.001; %训练目标最小误差0.001 net.trainParam.show=1;
%每间隔100步显示一次训练结果 net.trainParam.lr=0.01; %学习速率
bpnet=train(bpnet,image,label1'); bpnet=sim(bpnet,pic1);
shuzi=find(bpnet==max(bpnet))-1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% toc
利用自己在写字板上写的字测试:



如果不会下载MNIST 数据,可以访问:我的GitHub:

https://github.com/WeisongZhao/MNIST_Recognization
<https://github.com/WeisongZhao/MNIST_Recognization>


里面有不使用MATLAB工具箱的源代码

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信