人像美妆是近几年来深受广大女孩儿群体喜欢的修图功能之一,目前市面中做的比较好的有美妆相机、玩美彩妆、天天P图等APP,当然还有一些PC专用的秀图软件,本文将给大家做个算法初识;

什么是人像美妆?通俗的看个样例图:

这个图中,由左边的原图,到右边的化妆效果图,就叫做人像美妆。

本人对AI美妆的一些看法如下:

1.妆容自然,逼真;

2.鲁棒性高,不受五官遮挡影响;

3.速度越快越好;

4.完全智能化,可以针对不同人像照片智能匹配最优妆容;

目前传统美妆的优缺点:

优点:

1.妆容种类丰富,可自由搭配,用户自主选择;

美妆相机和玩美彩妆两款App均提供了数十种不同的妆容效果,供用户自由选择;

2.上妆速度快,可以实时处理;

玩美彩妆、美妆相机、天天P图、无他相机、FaceU等APP均已支持实时上妆效果;

缺点:

1.妆容鲁棒性不高,被光线,五官遮挡影响较大;

2.逼真度不高;

3.无法完全智能化;

目前市面基于传统算法的美妆类APP均无法达到上述3点;

传统人像美妆算法流程:

1.妆容模版制作(Photoshop等编辑软件制作,由设计完成)

2.人脸检测,特征点识别;

这一步骤主要通过人脸检测+人脸对齐来获得N个特征点,目前开源的有Dlib,OpenCV等,商用版有商汤科技、旷世科技、虹软科技等,以及腾讯、美图等;

这里给出一个开源的人脸检测+对齐(68点位)的资源链接:https://github.com/XiuSdk/cnn-facial-landmark
<https://github.com/XiuSdk/cnn-facial-landmark>



3.基于人脸特征点,将模版变形,对齐到人脸五官区域;

变形算法有很多,仿射变换,IDW变换,MLS变换,RMLS变换等;

相关代码连接:

IDW <https://blog.csdn.net/trent1985/article/details/79565274>

RMLS <https://blog.csdn.net/trent1985/article/details/79566052>

MLS <https://blog.csdn.net/Trent1985/article/details/80667611>(MLS代码在博客内容中)

如果大家懒得看博客,这里给出MLS变形代码:
static void setSrcPoints(const vector<PointD> &qsrc, vector<PointD> &newDotL,
int* nPoint) { *nPoint = qsrc.size(); newDotL.clear();
newDotL.reserve(*nPoint); for (size_t i = 0; i < qsrc.size(); i++)
newDotL.push_back(qsrc[i]); } static void setDstPoints(const vector<PointD>
&qdst,vector<PointD> &oldDotL, int* nPoint) { *nPoint = qdst.size();
oldDotL.clear(); oldDotL.reserve(*nPoint); for (size_t i = 0; i < qdst.size();
i++) oldDotL.push_back(qdst[i]); } static double bilinear_interp(double x,
double y, double v11, double v12, double v21, double v22) { return (v11 * (1 -
y) + v12 * y) * (1 - x) + (v21 * (1 - y) + v22 * y) * x; } static double
calcArea(const vector<PointD> &V) { PointD lt, rb; lt.x = lt.y = 1e10; rb.x =
rb.y = -1e10; for (vector<PointD >::const_iterator i = V.begin(); i != V.end();
i++) { if (i->x < lt.x) lt.x = i->x; if (i->x > rb.x) rb.x = i->x; if (i->y <
lt.y) lt.y = i->y; if (i->y > rb.y) rb.y = i->y; } return (rb.x - lt.x) * (rb.y
- lt.y); } static void calcDelta_rigid(int srcW, int srcH, int tarW, int tarH,
double alpha, int gridSize, int nPoint, int preScale, double *rDx, double *rDy,
vector<PointD> &oldDotL, vector<PointD> &newDotL) { int i, j, k; PointD swq,
qstar, newP, tmpP; double sw; double ratio; if (preScale) { ratio =
sqrt(calcArea(newDotL) / calcArea(oldDotL)); for (i = 0; i < nPoint; i++) {
newDotL[i].x *= 1 / ratio; newDotL[i].y *= 1 / ratio; } } double *w = new
double[nPoint]; if (nPoint < 2) { //rDx.setTo(0); //rDy.setTo(0); return; }
PointD swp, pstar, curV, curVJ, Pi, PiJ, Qi; double miu_r; for (i = 0;; i +=
gridSize) { if (i >= tarW && i < tarW + gridSize - 1) i = tarW - 1; else if (i
>= tarW) break; for (j = 0;; j += gridSize) { if (j >= tarH && j < tarH +
gridSize - 1) j = tarH - 1; else if (j >= tarH) break; sw = 0; swp.x = swp.y =
0; swq.x = swq.y = 0; newP.x = newP.y = 0; curV.x = i; curV.y = j; for (k = 0;
k < nPoint; k++) { if ((i == oldDotL[k].x) && j == oldDotL[k].y) break; if
(alpha == 1) w[k] = 1 / ((i - oldDotL[k].x) * (i - oldDotL[k].x) + (j -
oldDotL[k].y) * (j - oldDotL[k].y)); else w[k] = pow((i - oldDotL[k].x) * (i -
oldDotL[k].x) + (j - oldDotL[k].y) * (j - oldDotL[k].y), -alpha); sw = sw +
w[k]; swp.x = swp.x + w[k] * oldDotL[k].x; swp.y = swp.y + w[k] * oldDotL[k].y;
swq.x = swq.x + w[k] * newDotL[k].x; swq.y = swq.y + w[k] * newDotL[k].y; } if
(k == nPoint) { pstar.x = (1 / sw) * swp.x; pstar.y = (1 / sw) * swp.y; qstar.x
= 1 / sw * swq.x; qstar.y = 1 / sw * swq.y; // Calc miu_r double s1 = 0, s2 =
0; for (k = 0; k < nPoint; k++) { if (i == oldDotL[k].x && j == oldDotL[k].y)
continue; Pi.x = oldDotL[k].x - pstar.x; Pi.y = oldDotL[k].y - pstar.y; PiJ.x =
-Pi.y, PiJ.y = Pi.x; Qi.x = newDotL[k].x - qstar.x; Qi.y = newDotL[k].y -
qstar.y; s1 += w[k] * (Qi.x*Pi.x+Qi.y*Pi.y); s2 += w[k] *
(Qi.x*PiJ.x+Qi.y*PiJ.y); } miu_r = sqrt(s1 * s1 + s2 * s2); curV.x -= pstar.x;
curV.y -= pstar.y; curVJ.x = -curV.y, curVJ.y = curV.x; for (k = 0; k < nPoint;
k++) { if (i == oldDotL[k].x && j == oldDotL[k].y) continue; Pi.x =
oldDotL[k].x - pstar.x; Pi.y = oldDotL[k].y - pstar.y; PiJ.x = -Pi.y, PiJ.y =
Pi.x; tmpP.x = (Pi.x*curV.x+Pi.y*curV.y)* newDotL[k].x -
(PiJ.x*curV.x+PiJ.y*curV.y)* newDotL[k].y; tmpP.y =
-(Pi.x*curVJ.x+Pi.y*curVJ.y) * newDotL[k].x + (PiJ.x*curVJ.x+PiJ.y*curVJ.y) *
newDotL[k].y; tmpP.x *= w[k] / miu_r; tmpP.y *= w[k] / miu_r; newP.x += tmpP.x;
newP.y += tmpP.y; } newP.x += qstar.x; newP.y += qstar.y; } else { newP =
newDotL[k]; } if (preScale) { rDx[j * tarW + i] = newP.x * ratio - i; rDy[j *
tarW + i] = newP.y * ratio - j; } else { rDx[j * tarW + i] = newP.x - i; rDy[j
* tarW + i] = newP.y - j; } } } delete[] w; if (preScale!=0) { for (i = 0; i <
nPoint; i++){ newDotL[i].x *= ratio; newDotL[i].y *= ratio; } } } static void
calcDelta_Similarity(int srcW, int srcH, int tarW, int tarH, double alpha, int
gridSize, int nPoint, int preScale, double *rDx, double *rDy, vector<PointD>
&oldDotL, vector<PointD> &newDotL) { int i, j, k; PointD swq, qstar, newP,
tmpP; double sw; double ratio; if (preScale) { ratio = sqrt(calcArea(newDotL) /
calcArea(oldDotL)); for (i = 0; i < nPoint; i++) { newDotL[i].x *= 1 / ratio;
newDotL[i].y *= 1 / ratio; } } double *w = new double[nPoint]; if (nPoint < 2)
{ return; } PointD swp, pstar, curV, curVJ, Pi, PiJ; double miu_s; for (i = 0;;
i += gridSize) { if (i >= tarW && i < tarW + gridSize - 1) i = tarW - 1; else
if (i >= tarW) break; for (j = 0;; j += gridSize) { if (j >= tarH && j < tarH +
gridSize - 1) j = tarH - 1; else if (j >= tarH) break; sw = 0; swp.x = swp.y =
0; swq.x = swq.y = 0; newP.x = newP.y = 0; curV.x = i; curV.y = j; for (k = 0;
k < nPoint; k++) { if ((i == oldDotL[k].x) && j == oldDotL[k].y) break; w[k] =
1 / ((i - oldDotL[k].x) * (i - oldDotL[k].x) + (j - oldDotL[k].y) * (j -
oldDotL[k].y)); sw = sw + w[k]; swp.x = swp.x + w[k] * oldDotL[k].x; swp.y =
swp.y + w[k] * oldDotL[k].y; swq.x = swq.x + w[k] * newDotL[k].x; swq.y = swq.y
+ w[k] * newDotL[k].y; } if (k == nPoint) { pstar.x = (1 / sw) * swp.x; pstar.y
= (1 / sw) * swp.y; qstar.x = 1 / sw * swq.x; qstar.y = 1 / sw * swq.y; // Calc
miu_s miu_s = 0; for (k = 0; k < nPoint; k++) { if (i == oldDotL[k].x && j ==
oldDotL[k].y) continue; Pi.x = oldDotL[k].x - pstar.x; Pi.y = oldDotL[k].y -
pstar.y; miu_s += w[k] * (Pi.x*Pi.x+Pi.y*Pi.y); } curV.x -= pstar.x; curV.y -=
pstar.y; curVJ.x = -curV.y, curVJ.y = curV.x; for (k = 0; k < nPoint; k++) { if
(i == oldDotL[k].x && j == oldDotL[k].y) continue; Pi.x = oldDotL[k].x -
pstar.x; Pi.y = oldDotL[k].y - pstar.y; PiJ.x = -Pi.y, PiJ.y = Pi.x; tmpP.x =
(Pi.x*curV.x+Pi.y*curV.y) * newDotL[k].x - (PiJ.x*curV.x+PiJ.y*curV.y) *
newDotL[k].y; tmpP.y = -(Pi.x*curVJ.x+Pi.y*curVJ.y) * newDotL[k].x +
(PiJ.x*curVJ.x+PiJ.y*curVJ.y) * newDotL[k].y; tmpP.x *= w[k] / miu_s; tmpP.y *=
w[k] / miu_s; newP.x += tmpP.x; newP.y += tmpP.y; } newP.x += qstar.x; newP.y
+= qstar.y; } else { newP = newDotL[k]; } rDx[j * tarW + i] = newP.x - i; rDy[j
* tarW + i] = newP.y - j; } } delete[] w; if (preScale!=0) { for (i = 0; i <
nPoint; i++){ newDotL[i].x *= ratio; newDotL[i].y *= ratio; } } } static int
GetNewImg(unsigned char* oriImg, int width, int height, int stride, unsigned
char* tarImg, int tarW, int tarH, int tarStride, int gridSize, double* rDx,
double* rDy, double transRatio) { int i, j; double di, dj; double nx, ny; int
nxi, nyi, nxi1, nyi1; double deltaX, deltaY; double w, h; int ni, nj; int pos,
posa, posb, posc, posd; for (i = 0; i < tarH; i += gridSize) for (j = 0; j <
tarW; j += gridSize) { ni = i + gridSize, nj = j + gridSize; w = h = gridSize;
if (ni >= tarH) ni = tarH - 1, h = ni - i + 1; if (nj >= tarW) nj = tarW - 1, w
= nj - j + 1; for (di = 0; di < h; di++) for (dj = 0; dj < w; dj++) { deltaX =
bilinear_interp(di / h, dj / w, rDx[i * tarW + j], rDx[i * tarW + nj], rDx[ni *
tarW + j], rDx[ni * tarW + nj]); deltaY = bilinear_interp(di / h, dj / w, rDy[i
* tarW + j], rDy[i * tarW + nj], rDy[ni * tarW + j], rDy[ni * tarW + nj]); nx =
j + dj + deltaX * transRatio; ny = i + di + deltaY * transRatio; if (nx > width
- 1) nx = width - 1; if (ny > height - 1) ny = height - 1; if (nx < 0) nx = 0;
if (ny < 0) ny = 0; nxi = int(nx); nyi = int(ny); nxi1 = ceil(nx); nyi1 =
ceil(ny); pos = (int)(i + di) * tarStride + ((int)(j + dj) << 2); posa = nyi *
stride + (nxi << 2); posb = nyi * stride + (nxi1 << 2); posc = nyi1 * stride +
(nxi << 2); posd = nyi1 * stride + (nxi1 << 2); tarImg[pos] = (unsigned
char)bilinear_interp(ny - nyi, nx - nxi, oriImg[posa], oriImg[posb],
oriImg[posc], oriImg[posd]); tarImg[pos + 1] = (unsigned
char)bilinear_interp(ny - nyi, nx - nxi, oriImg[posa + 1],oriImg[posb + 1],
oriImg[posc + 1], oriImg[posd + 1]); tarImg[pos + 2] = (unsigned
char)bilinear_interp(ny - nyi, nx - nxi, oriImg[posa + 2],oriImg[posb + 2],
oriImg[posc + 2], oriImg[posd + 2]); tarImg[pos + 3] = (unsigned
char)bilinear_interp(ny - nyi, nx - nxi, oriImg[posa + 3],oriImg[posb + 3],
oriImg[posc + 3], oriImg[posd + 3]); } } return 0; }; static void
MLSImageWrapping(unsigned char* oriImg,int width, int height, int stride,const
vector<PointD > &qsrc, const vector<PointD > &qdst, unsigned char* tarImg, int
outW, int outH, int outStride, double transRatio, int preScale, int gridSize,
int method) { int srcW = width; int srcH = height; int tarW = outW; int tarH =
outH; double alpha = 1; int nPoint; int len = tarH * tarW; vector<PointD>
oldDotL, newDotL; double *rDx = NULL,*rDy = NULL;
setSrcPoints(qsrc,newDotL,&nPoint); setDstPoints(qdst,oldDotL,&nPoint); rDx =
(double*)malloc(sizeof(double) * len); rDy = (double*)malloc(sizeof(double) *
len); memset(rDx, 0, sizeof(double) * len); memset(rDy, 0, sizeof(double) *
len); if(method!=0) calcDelta_Similarity(srcW, srcH, tarW, tarH, alpha,
gridSize, nPoint, preScale, rDx, rDy, oldDotL, newDotL); else
calcDelta_rigid(srcW, srcH, tarW, tarH, alpha, gridSize, nPoint, preScale, rDx,
rDy, oldDotL, newDotL); GetNewImg(oriImg, srcW, srcH, stride, tarImg, tarW,
tarH, outStride, gridSize, rDx, rDy, transRatio); if(rDx != NULL) free(rDx);
if(rDy != NULL) free(rDy); }; int f_TMLSImagewarpping(unsigned char* srcData,
int width ,int height, int stride, unsigned char* dstData, int outW, int outH,
int outStride, int srcPoint[], int dragPoint[], int pointNum, double intensity,
int preScale, int gridSize, int method) { int res = 0; vector<PointD> qDst;
vector<PointD> qSrc; PointD point = {0}; int len = 0; for(int i = 0; i <
pointNum; i++) { len = (i << 1); point.x = srcPoint[len]; point.y =
srcPoint[len + 1]; qSrc.push_back(point); point.x = dragPoint[len]; point.y =
dragPoint[len + 1]; qDst.push_back(point); } MLSImageWrapping(srcData, width,
height, stride, qSrc, qDst, dstData, outW, outH, outStride, intensity,
preScale,gridSize, method); return res; };
4.将模版与人脸五官图像进行融合;

融合算法主要有alpha融合,Photoshop图层混合,泊松融合等;

alpha融合: S * alpha + D*(1-alpha)

图层混合公式如下:



泊松融合:算法详解 <https://blog.csdn.net/baimafujinji/article/details/6485778>

上述过程即传统算法流程,其中对美妆效果起决定性的是人脸特征点识别,如果没有准确的特征点,再好的妆容模版,上妆效果也出不来;

比如下面的例子:







图1中,由于眼睛特征点位置不准确,睫毛妆容已经偏离了眼睛区域;

图2中,由于拍照光线较暗,腮红明显,逼真度过低;

图3中,由于人眼和眉毛被部分遮挡,因此,传统算法的睫毛和眉毛效果悬浮在了头发之上;

目前传统算法相关的论文资料如下:

Rule-Based Facial Makeup Recommendation System.

Example-Based Cosmetic Transfer.

Region-based Face Makeup using example face images.

Simulating Makeup through Physics-based Manipulation of Intrinsic Image Layers.

A Visual Representation for editing face images.

Digital Face Makeup By Example.

在传统算法中,有一种妆容迁移算法,该算法可以直接将一张妆容效果图中的妆容特征,迁移到任意一张人像照片中去,实际上也是与人脸特征点密不可分,具体连接可参考:
https://blog.csdn.net/trent1985/article/details/70226779
<https://blog.csdn.net/trent1985/article/details/70226779>

目前AI美妆相关的论文资料如下:

Makeup Like a Superstar Deep Localized Makeup Transfer Network.

Examples-Rules Guided Deep Neural Network for Makeup Recommendation.

上述两篇基于深度学习的美妆算法论文主要思想有两个:

1,对于第一篇论文主要是对人像进行五官分析,获取肤色,眉毛颜色,唇色等等信息,然后进行不同妆容的最佳匹配,最后上妆;

框架如下:



2,对五官进行分别提取分类成不同的style,依据样例数据的特征style,进行最优匹配并上妆;

框架如下:



上述两篇算法论文,依旧是建立在人脸特征点的基础上研究的。

本人针对传统美妆算法,结合深度学习,做了如下改进:

1.只需要人脸检测框,不依赖于人脸特征点;

2.不受五官遮挡和光线影响;

3.妆容效果逼真度提高;

本人算法框架:

1.人脸检测,得到正方形人脸框,包含五官区域;

2.基于全卷积网络,以人脸框图像作为输入,上妆之后的人脸五官效果图作为输出,进行学习训练;

妆容模版使用如下模版:



在Fig.4模板妆容中,分别进行了眉毛处理,眼影、睫毛和唇彩的上妆,整体肤色以及其他内容均无调整;

训练中迭代10次,训练集和验证集准确率均达到了94%-95%,本人训练样本选取了500张,数据比较少,这里仅仅探讨可行性与方法分析;

3.使用2中的训练模型,对测试图进行上妆;

效果图如下:






上述效果图中我们可以看到,基于深度学习的美妆效果,避免了五官遮挡的影响,同时上妆效果更加自然,对环境光的鲁棒性也较高,本文这里未给出具体的网络模型与参数,不过思路大家已经可以借鉴!目前算法处于研究测试阶段,后续本人将公布完整的DEMO!

本人QQ:1358009172

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信