你是否也有这样的疑惑,人工智能、机器学习、深度学习以及监督学习等名词之间到底有什么样的联系与区别,以及它们的应用场景呢。下面就通过概念、区别和联系以及应用场景三个方面来具体的分析下他们。

一、概念

1、人工智能

    人工智能(Artificial
intelligence)简称AI。人工智能是计算机科学的一个分支,它企图了解智能的本质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。


    人工智能目前分为弱人工智能和强人工智能和超人工智能。


    1)弱人工智能:弱人工智能(ArtificialNarrow Intelligence
/ANI),只专注于完成某个特定的任务,例如语音识别、图象识别和翻译等,是擅长于单个方面的人工智能。
它们只是用于解决特定的具体类的任务问题而存在,大都是统计数据,以此从中归纳出模型。由于弱人工智能智能处理较为单一的问题,且发展程度并没有达到模拟人脑思维的程度,所以弱人工智能仍然属于“工具”的范畴,与传统的“产品”在本质上并无区别。


    2)  强人工智能:强人工智能(Artificial Generallnteligence
/AGI),属于人类级别的人工智能,在各方面都能和人类比肩,
它能够进行思考、计划、解决问题、抽象思维、理解复杂理念、快速学习和从经验中学习等操作,并且和人类一样得心应手。


    3)超人工智能:超人工智能(Artificial
Superintelligence/ASI),在几乎所有领域都比最聪明的人类大脑都聪明许多,包括科学创新、通识和社交技能。
在超人工智能阶段,人工智能已经跨过“奇点”,其计算和思维能力已经远超人脑。此时的人工智能已经不是人类可以理解和想象。人工智能将打破人脑受到的维度限制,其所观察和思考的内容,人脑已经无法理解,人工智能将形成一个新的社会。


    目前我们仍处于弱人工智能阶段。

2、机器学习

   
机器学习(MachineLearning)简称ML。机器学习属于人工智能的一个分支,也是人工智能的和核心。机器学习理论主要是设计和分析一些让计算机可以自动”学习“的算法。


3、深度学习

    深度学习(DeepLearning)简称DL。
最初的深度学习是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并不是一个全新的概念,可大致理解为包含多个隐含层的神经网络结构。为了提高深层神经网络的训练效果,人们对神经元的连接方法和激活函数等方面做出相应的调整。
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,如图象、声音、文本。

注意:你可能在接触深度学习的时候也听到过监督学习、非监督学习、半监督学习等概念,下面就顺便对这三个名词解析下:

1)监督学习:用一部分已知分类、有标记的样本来训练机器后,让它用学到的特征,对没有还分类、无标记的样本进行分类、贴标签。多用于分类。

2)非监督学习:用一部分已知分类、有标记的样本来训练机器后,让它用学到的特征,对没有还分类、无标记的样本进行分类、贴标签。多用于聚类。

3)半监督学习:有两个样本集,一个有标记,一个没有标记。综合利用有类标的样本( labeled sample)和没有类标的样本( unlabeled
sample),来生成合适的分类。

二、区别于联系

   
机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。如下图(来源http://baijiahao.baidu.com/s?id=1588563162916669654&wfr=spider&for=pc):


                               


下面一张图能更加细分其关系:





注意:在上幅图中,我们可以看下机器学习下的深度学习和监督学习以及非监督学习,那它们之间是什么关系呢,其实就是分类方法不同而已,他们之间可以互相包含。打个比方:一个人按性别可以分为男人和女人,而按年龄来分可以分为老人和小孩子。所以在深度学习中我们可以用到监督学习和非监督学习,而监督学习中可以用到很基础的不含神经元的算法(KNN算法)也可以用到添加了多层神经元的深度学习算法。

三、应用场景


1)    人工智能的研究领域在不断的扩大,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、自然语言处理、推荐系统等。并且目前的科研工作都集中在弱人工智能这部分。


2)    机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。从学习方法上来分,机器学习可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。传统的机器学习算法在指纹识别、人脸检测、特征物体检测等领域的应用基本达到了商业化的要求或特定场景的商业化水平。

3)   
深度学习本来并不是一种独立的学习方法,其本身也会用到监督学习和无监督学习方法来训练深度神经网络,但由于近年来改领域发展迅猛,一些特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习方法。主要应用在互联网、安防、金融、智能硬件、医疗、教育等行业,在人脸技术、图象识别、智能监控、文字识别、语义分析等领域。

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信