在实际的工作场景中,我们经常会遇到这样一种场景:想要将某些字段进行离散化即分桶,简单来说就是讲年龄分成几个区间。pandas中的cut方法能很好地完成此操作。
#导入相关库,并创建数据集 import pandas as pd import numpy as np index =
pd.Index(data=["Tom", "Bob", "Mary", "James"], name="name") data = { "age":
[15, 28, 23, 37], "city": ["Hangzhou", "ShangHai", "Hefei", "Luan"], "sex":
["male", "female", "female", "male"] } user_info = pd.DataFrame(data=data,
index=index) In [48]:user_info Out[48]: age city sex name Tom 15 Hangzhou male
Bob 28 ShangHai female Mary 23 Hefei female James 37 Luan male
#将user_info中的age分成三个年龄段 pd.cut(user_info.age,3) Out[51]: name Tom (14.978,
22.333] Bob (22.333, 29.667] Mary (22.333, 29.667] James (29.667, 37.0] Name:
age, dtype: category Categories (3, interval[float64]): [(14.978, 22.333] <
(22.333, 29.667] < (29.667, 37.0]]
从以上得到的结果可以看出,cut将年龄段进行了均等的切分。当然我们还可以进行自定义操作(此时可以对区间名称起别名):
#自定义区间并进行分割 qujian=[5,15,25,40] pd.cut(user_info.age,qujian) Out[55]: name Tom
(5, 15] Bob (25, 40] Mary (15, 25] James (25, 40] Name: age, dtype: category
Categories (3, interval[int64]): [(5, 15] < (15, 25] < (25, 40]] #起别名
pd.cut(user_info.age,qujian,labels=['child','youth','middle']) Out[56]: name
Tom child Bob middle Mary youth James middle Name: age, dtype: category
Categories (3, object): [child < youth < middle]
如果现在想求出每个区间出现male和female出现的次数,该如何操作呢?可以结合groupby函数来进行操作,如下:
#首先对user_info进行切割 pdd=pd.cut(user_info['age'],qujian)
user_info['age'].groupby(pdd).count() Out[66]: age (5, 15] 1 (15, 25] 1 (25,
40] 2 Name: age, dtype: int64
从上可以看出,实现age区间出现次数的统计。

 

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信