这里说的eosio智能合约不是泛指eos的智能合约,它是一个特殊的具体的合约。它本事可大了,我们一起来看看它有哪些功能

负责智能合约部署

    大家有注意到如下红色字体的log吗

$ cleos set contract hello.code ../eos-contract/hello -p hello.code

Publishing contract...

executed transaction:
daabe65267af4b9a11e5ff90a165bbaac68469630f499bcea1ef0eb7da6d970c  1792 bytes 
2558 us

#         eosio <= eosio::setcode              
{"account":"hello.code","vmtype":0,"vmversion":0,"code":"0061736d01000000013b0c60027f7e006000017e600...

#         eosio <= eosio::setabi               
{"account":"hello.code","abi":"00010c6163636f756e745f6e616d65046e616d6501026869000104757365720c61636...

 

这段log很明显的说明了

$ cleos set contract eosio build/contracts/eosio.bios -p eosio

    等价于调用eosio智能合约的setcode和setabi函数

$ cleos push action eosio setcode '[eosio.bios.wasm]' -p eosio

$ cleos push action eosio setabi eosio '[eosio.bios.abi] -p eosio

    也就说合约部署是通过调用eosio合约来实现的

    对应的源码:

        set contract会产生setcode和setabi两个action

   add_standard_transaction_options(contractSubcommand, "account@active");

   add_standard_transaction_options(codeSubcommand, "account@active");

   add_standard_transaction_options(abiSubcommand, "account@active");

   contractSubcommand->set_callback([&] {

      shouldSend = false;

      set_code_callback();

      set_abi_callback();

      std::cout << localized("Publishing contract...") << std::endl;

      send_actions(std::move(actions), 10000, packed_transaction::zlib);

   });

chain::action create_setcode(const name& account, const bytes& code) {

   return action {

      tx_permission.empty() ?
vector<chain::permission_level>{{account,config::active_name}} :
get_account_permissions(tx_permission),

      setcode{

         .account   = account,

         .vmtype    = 0,

         .vmversion = 0,

         .code      = code

      }

   };

}

struct setcode {

   account_name                     account;

   uint8_t                          vmtype = 0;

   uint8_t                          vmversion = 0;

   bytes                            code;

 

   static account_name get_account() {

      return config::system_account_name;

   }

   static action_name get_name() {

      return N(setcode);

   }

};

const static uint64_t system_account_name    = N(eosio);

    set_code和set_abi都是通过调用system_account_name即eosio智能合约来执行的


负责账号创建

    同样我们看看create account,其实就是调用eosio合约的newaccount函数

$ cleos create account eosio hello.code
EOS7KBTMkUq4VPakqsZUnZfBbMbS2U7cn9qSa3q6G5ZzEeUeNSVgv
EOS7KBTMkUq4VPakqsZUnZfBbMbS2U7cn9qSa3q6G5ZzEeUeNSVgv

executed transaction:
01aff4356a6277eec777494fc6aeaf97164c53997c46fe853247ed7e100f4987  200
bytes  911 us

#         eosio <= eosio::newaccount 
           {"creator":"eosio","name":"hello.code","owner":{"threshold":1,"keys":[{"key":"EOS7KBTMkUq4VPakqsZUnZ...

    


负责权限管理

    这次是调用eosio的updateauth函数

$ cleos set account permission testaccount active '{"threshold" : 1, "keys" :
[], "accounts" :
[{"permission":{"actor":"bob","permission":"active"},"weight":1},
{"permission":{"actor":"stacy","permission":"active"},"weight":1}]}’ owner

executed transaction:
b1bc9680a9ba615a6de8c3f7c692d7d28ff97edae245bb40f948692b14ea6c15  160
bytes  189 us

#         eosio <= eosio::updateauth 
           {"account":"testaccount","permission":"active","parent":"owner","auth":{"threshold":1,"keys":[],"acc...

warning: transaction executed locally, but may not be confirmed by the network
yet

 

蛋生鸡,鸡生蛋问题

    既然eosio是一个智能合约,而它又负责合约部署,那它自己是谁部署的呢?我们先来看下这个结构图



    eosio contract负责系统服务,比如部署合约,创建账号。infra
contracts层比如eosio.token和eosio.msig类似库作用的合约,比如多签名,发行代币,方便dapp层使用。Dapp才是用户直接接触的,每个开发人员编写程序然后部署,这些程序都是DApp。

    eosio contract由3个部分构成

* nativeaction
      nativeactions就是前面提到的setcode, setabi,
newaccount功能的函数集。这部分代码是hardcode在EOS系统代码里的,也就说不需要部署这一步骤,所以就解决了蛋生鸡,鸡生蛋问题。

   2.  eosio.bios, eosio.system

        eosio.bios是一个智能合约的代码,是通过智能合约部署方式绑定到eosio
contract上的。那你可能会说,eosio.bios部署后,nativeactions部分是不是就失效了啊。确实可以这样实现,由于setcode这些action需要永久生效,这就需要eosio.bios包含nativeactions这些函数,这样就出现了相同一份代码分散在两个模块,独立性和维护不够好。所以,目前的实现是通过特殊处理让nativeactions的函数有最高优先级,永不覆盖,哪怕eosio.bios实现了同样的函数(比如set_code,
set_abi)。但是eosio.system和eosio.bios是一个级别的,都是contract,
 是水火不相容的,一旦将eosio.system绑定到eosio这个账号,eosio.bios就失效了,所以eosio.bios的函数要么是临时用途的,要么就需要bios.system重新实现,比如setalimits会失效,而setpriv会在eosio.system重新实现。这个和cpu启动一样,一开始bios(bootloader)代码运行,然后引导system代码,当system加载后,bios(bootloader)代码失效。所以从这个设计和名字可以看出,EOS确实是在按照操作系统的逻辑设计


eosio.bios的接口

EOSIO_ABI( eosio::bios, (setpriv)(setalimits)(setglimits)(setprods)(reqauth) )

eosio.sytem的接口

EOSIO_ABI( eosiosystem::system_contract,

(setram)

// delegate_bandwith.cpp

(delegatebw)(undelegatebw)(refund)

(buyram)(buyrambytes)(sellram)

// voting.cpp

// producer_pay.cpp

(regproxy)(regproducer)(unregprod)(voteproducer)

(claimrewards)

// native.hpp

(onblock)


(newaccount)(updateauth)(deleteauth)(linkauth)(unlinkauth)(postrecovery)(passrecovery)(vetorecovery)(onerror)(canceldelay)

//this file

(setpriv)

)

 

nativeaction解读

nativeaction注册

    nativeaction是通过SET_APP_HANDLER注册的

#define SET_APP_HANDLER( receiver, contract, action) \

   set_apply_handler( #receiver, #contract, #action, &BOOST_PP_CAT(apply_,
BOOST_PP_CAT(contract, BOOST_PP_CAT(_,action) ) ) )

 

   SET_APP_HANDLER( eosio, eosio, newaccount );

   SET_APP_HANDLER( eosio, eosio, setcode );

   SET_APP_HANDLER( eosio, eosio, setabi );

   SET_APP_HANDLER( eosio, eosio, updateauth );

   SET_APP_HANDLER( eosio, eosio, deleteauth );

   SET_APP_HANDLER( eosio, eosio, linkauth );

   SET_APP_HANDLER( eosio, eosio, unlinkauth );

/*

   SET_APP_HANDLER( eosio, eosio, postrecovery );

   SET_APP_HANDLER( eosio, eosio, passrecovery );

   SET_APP_HANDLER( eosio, eosio, vetorecovery );

*/

 

   SET_APP_HANDLER( eosio, eosio, canceldelay );

   void set_apply_handler( account_name receiver, account_name contract,
action_name action, apply_handler v ) {

      apply_handlers[receiver][make_pair(contract,action)] = v;

   }

    

对应的函数名是apply_eosio_xxx,比如apply_eosio_setcode,apply_eosio_newaccount

nativeaction函数调用

    系统会先检测action的名字是否注册在native handler里,如果在则直接调用,不在的话,执行合约代码,并跳转到相应的action函数

 

class apply_context { 

    { 

    public:

      apply_context(controller& con, transaction_context& trx_ctx, const
action& a, uint32_t depth=0)

      :control(con)

      ,db(con.db())

      ,trx_context(trx_ctx)

      ,act(a)

      //合约的账号

      ,receiver(act.account)

      ,used_authorizations(act.authorization.size(), false)

}

 

action_trace apply_context::exec_one()

{

   auto start = fc::time_point::now();

 

   const auto& cfg = control.get_global_properties().configuration;

   try {

      //获取智能合约对象

      const auto &a = control.get_account(receiver);

      privileged = a.privileged;

      //检测该action是否是native action,如果是则调用native handler

      auto native = control.find_apply_handler(receiver, act.account,
act.name);

      if (native) {

         //hative handler(action)存在,则调用

         (*native)(*this);

      }

      //只要不是setcode调用,允许nativehandler和contract部署的代码都执行

      if( a.code.size() > 0

          && !(act.account == config::system_account_name && act.name ==
N(setcode) && receiver == config::system_account_name) ) {

         try {

            control.get_wasm_interface().apply(a.code_version, a.code, *this);

         } catch ( const wasm_exit& ){}

      }

     ….

 

   } FC_CAPTURE_AND_RETHROW((_pending_console_output.str()));

}

 

/********************************

* 本文来自CSDN博主"爱踢门"

* 转载请标明出处:http://blog.csdn.net/itleaks <http://blog.csdn.net/itleaks>

******************************************/

如果你对EOS,ETH技术及开发感兴趣,请入QQ群讨论: 829789117


如需实时查看最新文章,请关注公众号"区块链斜杠青年",一起探索区块链未来


友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信