大家好,今天,我们来聊聊大数据。

这些年,大数据作为一个时髦概念,出现频率很高,关注度也很高。

对于很多人来说,当他第一次听到“大数据”这个词,会自然而然从字面上去理解——认为大数据就是大量的数据,大数据技术就是大量数据的存储技术。

但是,事实并非如此。

大数据比想象中复杂。它不只是一项数据存储技术,而是一系列和海量数据相关的抽取、集成、管理、分析、解释技术,是一个庞大的框架系统。

更进一步来说,大数据是一种全新的思维方式和商业模式。

图片来自网络

今天这篇文章,就让我们花五分钟的时间,来深入了解一下,到底什么是大数据。

 大数据的定义  

首先,还是要重新审视大数据的定义。

行业里对大数据的定义有很多,有广义的定义,也有狭义的定义。

广义的定义,有点哲学味道——大数据,是指物理世界到数字世界的映射和提炼。通过发现其中的数据特征,从而做出提升效率的决策行为。

狭义的定义,是技术工程师给的——大数据,是通过获取、存储、分析,从大容量数据中挖掘价值的一种全新的技术架构。

相比较而言,我还是喜欢技术定义,哈哈。

大家注意,关键词我都在上面原句加粗了哈!

要做什么?——获取数据、存储数据、分析数据

对谁做?——大容量数据

目的是什么?——挖掘价值

获取数据、存储数据、分析数据,这一系列的行为,都不算新奇。我们每天都在用电脑,每天都在干这个事。

例如,每月的月初,考勤管理员会获取每个员工的考勤信息,录入Excel表格,然后存在电脑里,统计分析有多少人迟到、缺勤,然后扣TA工资。

但是,同样的行为,放在大数据身上,就行不通了。换言之,传统个人电脑,传统常规软件,无力应对的数据级别,才叫“大数据”。

 大数据,到底有多大?  

我们传统的个人电脑,处理的数据,是GB/TB级别。例如,我们的硬盘,现在通常是1TB/2TB/4TB的容量。

TB、GB、MB、KB的关系,大家应该都很熟悉了:

1 KB = 1024 B  (KB - kilobyte)

1 MB = 1024 KB (MB - megabyte) 

1 GB = 1024 MB (GB - gigabyte) 

1 TB = 1024 GB (TB - terabyte) 

而大数据是什么级别呢?PB/EB级别。

大部分人都没听过。其实也就是继续翻1024倍:

1 PB = 1024 TB (PB - petabyte) 

1 EB = 1024 PB (EB - exabyte) 

只是看这几个字母的话,貌似不是很直观。我来举个例子吧。

1TB,只需要一块硬盘可以存储。容量大约是20万张照片或20万首MP3音乐,或者是631903部《红楼梦》小说。

普通硬盘

1PB,需要大约2个机柜的存储设备。容量大约是2亿张照片或2亿首MP3音乐。如果一个人不停地听这些音乐,可以听上千年。。。

2个机柜

1EB,需要大约2000个机柜的存储设备。如果并排放这些机柜,可以连绵1.2公里那么长。如果摆放在机房里,需要21个标准篮球场那么大的机房,才能放得下。

21个篮球场

阿里、百度、腾讯这样的互联网巨头,数据量据说已经接近EB级。

阿里数据中心内景

EB还不是最大的。目前全人类的数据量,是ZB级。

1 ZB = 1024 EB (ZB - zettabyte) 

2011年,全球被创建和复制的数据总量是1.8ZB。

而到2020年,全球电子设备存储的数据,将达到35ZB。如果建一个机房来存储这些数据,那么,这个机房的面积将比42个鸟巢体育场还大。

数据量不仅大,增长还很快——每年增长50%。

目前的大数据应用,还没有达到ZB级,主要集中在PB/EB级别。

大数据的级别定位

1 KB = 1024 B  (KB - kilobyte)

1 MB = 1024 KB (MB - megabyte) 

1 GB = 1024 MB (GB - gigabyte) 

1 TB = 1024 GB (TB - terabyte) 

1 PB = 1024 TB (PB - petabyte) 

1 EB = 1024 PB (EB - exabyte) 

1 ZB = 1024 EB (ZB - zettabyte) 

  数据的来源  

数据的增长,为什么会如此之快?

说到这里,就要回顾一下人类社会数据产生的几个重要阶段。

大致来说,是三个重要的阶段。


第一个阶段,就是计算机被发明之后的阶段。尤其是数据库被发明之后,使得数据管理的复杂度大大降低。各行各业开始产生了数据,从而被记录在数据库中。这时的数据,以结构化数据为主(待会解释什么是“结构化数据”)。数据的产生方式,也是
被动的。

世界上第一台通用计算机-ENIAC


第二个阶段,是伴随着互联网2.0时代出现的。互联网2.0的最重要标志,就是用户原创内容。随着互联网和移动通信设备的普及,人们开始使用博客、facebook、youtube这样的社交网络,从而
主动产生了大量的数据。

第三个阶段,是感知式系统阶段。随着物联网的发展,各种各样的感知层节点开始自动产生大量的数据,例如遍布世界各个角落的传感器、摄像头。

经过了“被动-主动-自动”这三个阶段的发展,最终导致了人类数据总量的极速膨胀。

  大数据的价值  

刚才说到价值密度,也就说到了大数据的核心本质,那就是价值。




人类提出大数据、研究大数据的主要目的,就是为了挖掘大数据里面的价值。

大数据,究竟有什么价值?

早在1980年,著名未来学家阿尔文·托夫勒在他的著作《第三次浪潮》中,就明确提出:“数据就是财富”,并且,将大数据称为“第三次浪潮的华彩乐章”。

第一次浪潮:农业阶段,约1万年前开始

第二次浪潮:工业阶段,17世纪末开始

第三次浪潮:信息化阶段,20世纪50年代后期开始

进入21世纪之后,随着前面所说的第二第三阶段的发展,移动互联网崛起,存储能力和云计算能力飞跃,大数据开始落地,也引起了越来越多的重视。

2012年的世界经济论坛指出:“数据已经成为一种新的经济资产类别,就像货币和黄金一样”。这无疑将大数据的价值推到了前所未有的高度层面上。

如今,大数据应用开始走进我们的生活,影响我们的衣食住行。

之所以大数据会有这么快的发展,就是因为越来越多的行业和企业,开始认识到大数据的价值,开始试图参与挖掘大数据的价值。

归纳来说,大数据的价值主要来自于两个方面:

1 帮助企业了解用户

大数据通过相关性分析,将客户和产品、服务进行关系串联,对用户的偏好进行定位,从而提供更精准、更有导向性的产品和服务,提升销售业绩。

典型的例子就是电商。


像阿里淘宝这样的电子商务平台,积累了大量的用户购买数据。在早期的时候,这些数据都是累赘和负担,存储它们需要大量的硬件成本。但是,现在这些数据都是阿里最宝贵的财富。

通过这些数据,可以分析用户行为,精准定位目标客群的消费特点、品牌偏好、地域分布,从而引导商家的运营管理、品牌定位、推广营销等。

大数据可以对业绩产生直接影响。它的效率和准确性,远远超过传统的用户调研。

除了电商,包括能源、影视、证券、金融、农业、工业、交通运输、公共事业等,都是大数据的用武之地。

大数据甚至能够帮助竞选总统

2 帮助企业了解自己

除了帮助了解用户之外,大数据还能帮助了解自己。


企业生产经营需要大量的资源,大数据可以分析和锁定资源的具体情况,例如储量分布和需求趋势。这些资源的可视化,可以帮助企业管理者更直观地了解企业的运作状态,更快地发现问题,及时调整运营策略,降低经营风险。

总而言之,“知己知彼,百战百胜”。大数据,就是为决策服务的。

  大数据和云计算  

说到这里,我们要回答一个很多人心里都存在的疑惑——大数据和云计算之间,到底有什么关系?

可以这么解释:数据本身是一种资产,而云计算,则是为挖掘资产价值提供合适的工具。

从技术上,大数据是依赖于云计算的。云计算里面的海量数据存储技术、海量数据管理技术、分布式计算模型等,都是大数据技术的基础。

云计算就像是挖掘机,大数据就是矿山。如果没有云计算,大数据的价值就发挥不出来。

相反的,大数据的处理需求,也刺激了云计算相关技术的发展和落地。

也就是说,如果没有大数据这座矿山,云计算这个挖掘机,很多强悍的功能都发展不起来。

套用一句老话——云计算和大数据,两者是相辅相成的。

  大数据和物联网(5G)  

第二个问题,大数据和物联网有什么关系?

这个问题我觉得大家应该能够很快想明白,前面其实也提到了。

物联网就是“物与物互相连接的互联网”。物联网的感知层,产生了海量的数据,将会极大地促进大数据的发展。

同样,大数据应用也发挥了物联网的价值,反向刺激了物联网的使用需求。越来越多的企业,发觉能够通过物联网大数据获得价值,就会愿意投资建设物联网。

其实这个问题也可以进一步延伸为“大数据和5G之间的关系”。

即将到来的5G,通过提升连接速率,提升了“人联网”的感知,也促进了人类主动创造数据。

另一方面,它更多是为“物联网”服务的。包括低延时、海量终端连接等,都是物联网场景的需求。

5G刺激物联网的发展,而物联网刺激大数据的发展。所有通信基础设施的强大,都是为大数据崛起铺平道路。

  大数据的产业链  

接下来再说说大数据的产业链。

大数据的产业链,和大数据的处理流程是紧密相关的。简单来说,就是生产数据、聚合数据、分析数据、消费数据。

每个环节,都有相应的角色玩家。如下图:

从目前的情况来看,国外厂商在大数据产业占据了较大的份额,尤其是上游领域,基本上都是国外企业。国内IT企业相比而言,存在较大的差距。

大数据相关重点领域及企业(技术)

大数据是现在最炙手可热的技术,如果你也想高薪,赶紧学起来吧~

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信