有向图强连通分量的Tarjian算法

2016年08月16日 10:38:45

阅读数:2006

<> 【转载地址】点击打开链接
<http://www.cnblogs.com/kuangbin/archive/2013/07/07/3176451.html>

<> [有向图强连通分量]

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly
connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly
connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

<https://www.byvoid.com/upload/wp/2009/04/image1.png>


直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M)。更好的方法是Kosaraju算法或Tarjan算法,两者的时间复杂度都是O(N+M)。本文介绍的是Tarjan算法。

<> [Tarjan算法]


Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。由定义可以得出,
Low(u)=Min { DFN(u), Low(v),(u,v)为树枝边,u为v的父节点 DFN(v),(u,v)为指向栈中节点的后向边(非横叉边) }
当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

算法伪代码如下
tarjan(u) { DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值 Stack.push(u) //
将节点u压入栈中 for each (u, v) in E // 枚举每一条边 if (v is not visted) // 如果节点v未被访问过
tarjan(v) // 继续向下找 Low[u] = min(Low[u], Low[v]) else if (v in S) // 如果节点v还在栈内
Low[u] = min(Low[u], DFN[v]) if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根 repeat v =
S.pop // 将v退栈,为该强连通分量中一个顶点 print v until (u== v) }
接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

<https://www.byvoid.com/upload/wp/2009/04/image2.png>

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

<https://www.byvoid.com/upload/wp/2009/04/image3.png>


返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

<https://www.byvoid.com/upload/wp/2009/04/image4.png>


继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

<https://www.byvoid.com/upload/wp/2009/04/image5.png>

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。


求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与
求无向图的双连通分量(割点、桥)的Tarjan算法 <https://www.byvoid.com/blog/biconnect/>
也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。

求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan
<http://en.wikipedia.org/wiki/Robert_Tarjan>命名的。Robert Tarjan还发明了求双连通分量
<https://www.byvoid.com/blog/biconnect/>
的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意。

附:tarjan算法的C++程序
void tarjan(int i) { int j; DFN[i]=LOW[i]=++Dindex; instack[i]=true;
Stap[++Stop]=i; for (edge *e=V[i];e;e=e->next) { j=e->t; if (!DFN[j]) {
tarjan(j); if (LOW[j]<LOW[i]) LOW[i]=LOW[j]; } else if (instack[j] &&
DFN[j]<LOW[i]) LOW[i]=DFN[j]; } if (DFN[i]==LOW[i]) { Bcnt++; do {
j=Stap[Stop--]; instack[j]=false; Belong[j]=Bcnt; } while (j!=i); } } void
solve() { int i; Stop=Bcnt=Dindex=0; memset(DFN,0,sizeof(DFN)); for
(i=1;i<=N;i++) if (!DFN[i]) tarjan(i); }
[参考资料]

* Wikipedia
<http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm>
* Amber <http://adn.cn/>的图论总结

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信