Redis缓存穿透和缓存雪崩以及解决方案
Redis缓存穿透和缓存雪崩以及解决方案 <>缓存穿透 <>解决方案 <>布隆过滤 <>缓存空对象 <>比较 <>缓存雪崩 <>解决方案 <>
保证缓存层服务高可用性 <>依赖隔离组件为后端限流并降级 <>数据预热 <>缓存并发 <>分布式锁 <>
缓存穿透
缓存穿透是指查询一个一定不存在的数据,由于缓存不命中,接着查询数据库也无法查询出结果,因此也不会写入到缓存中,这将会导致每个查询都会去请求数据库,造成缓存穿透;
解决方案
布隆过滤
对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系统的查询压力;
缓存空对象
当存储层不命中后,即使返回的空对象也将其缓存起来,同时会设置一个过期时间,之后再访问这个数据将会从缓存中获取,保护了后端数据源;
但是这种方法会存在两个问题:
*
如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多的空值的键;
*
即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于需要保持一致性的业务会有影响。
比较
缓存雪崩
缓存雪崩是指,由于缓存层承载着大量请求,有效的保护了存储层,但是如果缓存层由于某些原因整体不能提供服务,于是所有的请求都会达到存储层,存储层的调用量会暴增,造成存储层也会挂掉的情况。
解决方案
保证缓存层服务高可用性
即使个别节点、个别机器、甚至是机房宕掉,依然可以提供服务,比如 Redis Sentinel 和 Redis Cluster 都实现了高可用。
依赖隔离组件为后端限流并降级
在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
数据预热
可以通过缓存reload机制,预先去更新缓存,再即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。
缓存并发
缓存并发是指,高并发场景下同时大量查询过期的key值、最后查询数据库将缓存结果回写到缓存、造成数据库压力过大
分布式锁
在缓存更新或者过期的情况下,先获取锁,在进行更新或者从数据库中获取数据后,再释放锁,需要一定的时间等待,就可以从缓存中继续获取数据。
热门工具 换一换