<>复变函数积分的定义
代数式:z=x+iyz=x+iyz=x+iy
三角式:z=r(cosφ+isinφ)z=r(cos\varphi+isin\varphi)z=r(cosφ+isinφ)
指数式:z=reiφz=r e^{i\varphi}z=reiφ
<>复函数的几何意义
<>复数的运算
若 z1=r1eiφ1z_1=r_1e^{i\varphi_1}z1=r1eiφ1和z2=r2eiφ2z_2=r_2e^{i\varphi_2}z2=
r2eiφ2,则
积:z=z1+z2=r1r2ei(φ1+φ2)z=z_1+z_2=r_1r_2e^{i(\varphi_1+\varphi_2)}z=z1+z2=r1
r2ei(φ1+φ2)
商:z=z1z2=r1r2ei(φ1−φ2)
z=\frac{z_1}{z_2}=\frac{r_1}{r_2}e^{i(\varphi_1-\varphi_2)}z=z2z1=r2r1ei(φ
1−φ2)
若 z=reiφz=re^{i\varphi}z=reiφ,则
乘方:zn=rneinφz^n=r^ne^{in\varphi}zn=rneinφ
方根:zn=rnei(φn+2kπn)
\sqrt[n]{z}=\sqrt[n]{r}e^{i(\frac{\varphi}{n}+\frac{2k\pi}{n})}nz=nrei(nφ+n2k
π)
对数:lnz=ln(reiφ)=ln∣r∣+iφlnz=ln(re^{i\varphi})=ln|r|+i\varphilnz=ln(reiφ)=ln∣r∣
+iφ
幂函数:zn=(reiφ)n=rneinφ=rn(cosnφ+isinnφ)
z^n=(re^{i\varphi})^{n}=r^ne^{in\varphi}=r^n(cosn\varphi+isinn\varphi)zn=(reiφ)n
=rneinφ=rn(cosnφ+isinnφ)
zn=enLnz=en(ln∣z∣+iArgz),k=0,±1,±2...
z^n=e^{nLnz}=e^{n(ln|z|+iArgz)},k=0,\pm1,\pm2...zn=enLnz=en(ln∣z∣+iArgz),k=0,±1,
±2...
<>共轭复数
若z=x+iy=reiφz=x+iy=re^{i\varphi}z=x+iy=reiφ,则zzz的共轭复数定义 z∗=x−iy=re−iφ
z^*=x-iy=re^{-i\varphi}z∗=x−iy=re−iφ为复数zzz的共轭复数,∣z∣2=zz∗\lvert z\rvert^2=zz^*∣z∣
2=zz∗。
<>欧拉公式
eiφ=∑n=0∞1n!(iφ)n=∑k=0∞i2k2k!φ2k+∑k=0∞i2k+12k+1!φ2k+1
e^{i\varphi}=\sum^{\infty}_{n=0}{\frac{1}{n!}(i\varphi)^n}=\sum^{\infty}_{k=0}{\frac{i^{2k}}{2k!}\varphi^{2k}}+\sum^{\infty}_{k=0}{\frac{i^{2k+1}}{2k+1!}\varphi^{2k+1}}
eiφ=∑n=0∞n!1(iφ)n=∑k=0∞2k!i2kφ2k+∑k=0∞2k+1!i2k+1φ2k+1
=∑k=0∞(−1)k2k!φ2k+∑k=0∞(−1)k2k+1!φ2k+1
=\sum^{\infty}_{k=0}{\frac{(-1)^{k}}{2k!}\varphi^{2k}}+\sum^{\infty}_{k=0}{\frac{(-1)^{k}}{2k+1!}\varphi^{2k+1}}
=∑k=0∞2k!(−1)kφ2k+∑k=0∞2k+1!(−1)kφ2k+1
=cosφ+isinφ=cos\varphi+isin\varphi=cosφ+isinφ
<>三角函数
sinφ=12i(eiφ−e−iφ)sin\varphi=\frac{1}{2i}(e^{i\varphi}-e^{-i\varphi})sinφ=2i1(
eiφ−e−iφ)
cosφ=12(eiφ+e−iφ)cos\varphi=\frac{1}{2}(e^{i\varphi}+e^{-i\varphi})cosφ=21(eiφ
+e−iφ)
<>复变函数的定义
若在复数平面上存在点集EEE,对EEE的每个点z=x+iyz=x+iyz=x+iy都有复数w=u+ivw=u+ivw=u+iv与之对应,则称www为zzz
的函数,zzz为www的变量,定义域为 EEE,记为:
w=f(z)=u(x,y)+iv(x,y),z∈Ew=f(z)=u(x,y)+iv(x,y), z\in Ew=f(z)=u(x,y)+iv(x,y),z∈E
也即:f:z=x+iy⟶w=u+ivf: z=x+iy\longrightarrow w=u+ivf:z=x+iy⟶w=u+iv
定义了一个复变函数实际上定义了两个相关联的实二元函数,因此复函数将具有独特的性质。
例如:
w=f(z)=z2=(x+iy)2=x2−y2+2ixyw=f(z)=z^2=(x+iy)^2=x^2-y^2+2ixyw=f(z)=z2=(x+iy)2=x
2−y2+2ixy
这样{u(x,y)=x2−y2v(x,y)=2xy \begin{cases} u(x,y)&=x^2-y^2\\ v(x,y)&=2xy
\end{cases}{u(x,y)v(x,y)=x2−y2=2xy
<>导数的定义
设w=f(z)w=f(z)w=f(z)是在区域BBB的定义的单值函数。若在BBB内的某点ZZZ,极限:
lim△z→0△w△z=lim△z→0f(z+△z)−f(z)△z\lim \limits_{\triangle
z\rightarrow0}\frac{\triangle w}{\triangle z}=\lim \limits_{\triangle
z\rightarrow0}\frac{f(z+\triangle z)-f(z)}{\triangle z}△z→0lim△z△w=△z→0lim△zf
(z+△z)−f(z)
存在,且与△z→0\triangle z\rightarrow0△z→0的方向无关,则称函数w=f(z)w=f(z)w=f(z)在zzz
点可导,称该极限为函数f(z)f(z)f(z)在zzz点的导数,记为f′(z)f'(z)f′(z)或dfdz\frac{df}{dz}dzdf。
1、当△z\triangle z△z沿实轴xxx趋于000,即△y=0,△z=△x→0\triangle y=0,\triangle
z=\triangle x\rightarrow0△y=0,△z=△x→0时,有
lim△z=△x→0f(z0+△z)−f(z0)△z==lim△x→0u(x0+△x,y0)+iv(x0+△x,y0)−u(x0,y0)−iv(x0,y0
)△x=∂u∂x+i∂v∂x \begin{array}{ll} \lim \limits_{\triangle z=\triangle
x\rightarrow0}\frac{f(z_{0}+\triangle z)-f(z_0)}{\triangle z}&=\\
&=\lim\limits_{\triangle x\rightarrow0}\frac{u(x_0+\triangle
x,y_0)+iv(x_0+\triangle x,y_0)-u(x_0,y_0)-iv(x_0,y_0)}{\triangle x}\\
&=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x} \end{array}△z
=△x→0lim△zf(z0+△z)−f(z0)==△x→0lim△xu(x0+△x,y0)+iv(x0+△x,y0)−u(x0,y0)
−iv(x0,y0)=∂x∂u+i∂x∂v
2、当△z\triangle z△z沿虚轴yyy趋于000,即△x=0,△z=△y→0\triangle x=0,\triangle z=\triangle
y\rightarrow0△x=0,△z=△y→0时,有
lim△z=△y→0f(z0+△z)−f(z0)△z==lim△y→0u(x0,y0+△y)+iv(x0,y0+△y)−u(x0,y0)−iv(x0,y0
)i△y=∂v∂y−i∂u∂y \begin{array}{ll} \lim \limits_{\triangle z=\triangle
y\rightarrow0}\frac{f(z_{0}+\triangle z)-f(z_0)}{\triangle z}&=\\
&=\lim\limits_{\triangle y\rightarrow0}\frac{u(x_0,y_0+\triangle
y)+iv(x_0,y_0+\triangle y)-u(x_0,y_0)-iv(x_0,y_0)}{i\triangle y}\\
&=\frac{\partial v}{\partial y}-i\frac{\partial u}{\partial y} \end{array}△z
=△y→0lim△zf(z0+△z)−f(z0)==△y→0limi△yu(x0,y0+△y)+iv(x0,y0+△y)−u(x0,y0
)−iv(x0,y0)=∂y∂v−i∂y∂u
柯西黎曼方程(Cauchy-Riemann,C_R方程)是函数在一点可微的必要条件。
即
f′(z)=∂u∂x+i∂v∂x=∂v∂y−i∂u∂y=∂u∂x−i∂u∂y=∂v∂y+i∂v∂x \begin{array}{ll}
f'(z)&=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}\\
&=\frac{\partial v}{\partial y}-i\frac{\partial u}{\partial y}\\
&=\frac{\partial u}{\partial x}-i\frac{\partial u}{\partial y}\\
&=\frac{\partial v}{\partial y}+i\frac{\partial v}{\partial x} \end{array}f′
(z)=∂x∂u+i∂x∂v=∂y∂v−i∂y∂u=∂x∂u−i∂y∂u=∂y∂v+i∂x∂v
也可写成:
{∂u∂x=∂v∂y∂v∂x=−∂u∂y \begin{cases} \frac{\partial u}{\partial
x}=\frac{\partial v}{\partial y}\\ \frac{\partial v}{\partial
x}=-\frac{\partial u}{\partial y}\\ \end{cases}{∂x∂u=∂y∂v∂x∂v=−∂y∂u
或
{∂u∂r=1r∂v∂φ1r∂u∂φ=−∂v∂r \begin{cases} \frac{\partial u}{\partial
r}=\frac{1}{r}\frac{\partial v}{\partial \varphi}\\ \frac{1}{r}\frac{\partial
u}{\partial \varphi}=-\frac{\partial v}{\partial r} \end{cases}{∂r∂u=r1∂φ∂vr1
∂φ∂u=−∂r∂v
<>解析函数的定义
若函数f(z)f(z)f(z)在z0z_0z0点及其邻域上处处可导,则称f(z)f(z)f(z)字z0z_0z0解析,在区域E上每点都解析,则称f(z)
f(z)f(z)在区域上的解析函数。
<>解析函数的性质
解析函数的实部和虚部通过柯西黎曼(C-R)方程相互联系:知其中一个函数,可求另一个函数。
热门工具 换一换