项目GitHub主页:https://github.com/orobix/retina-unet
<https://github.com/orobix/retina-unet>

参考论文:Retina blood vessel segmentation with a convolution neural network (U-net)
<https://blog.csdn.net/shenziheng1/article/details/Retina>




1. 训练数据

1.1 训练图像、训练金标准随机分块

主代码:
# 训练集太少,采用分块的方法进行训练 def get_data_training(DRIVE_train_imgs_original, #训练图像路径
DRIVE_train_groudTruth, #金标准图像路径 patch_height, patch_width, N_subimgs,
inside_FOV): train_imgs_original = load_hdf5(DRIVE_train_imgs_original)
train_masks = load_hdf5(DRIVE_train_groudTruth)
#visualize(group_images(train_imgs_original[0:20,:,:,:],5),'imgs_train').show()
train_imgs = my_PreProc(train_imgs_original) # 图像预处理 归一化等 train_masks =
train_masks/255. train_imgs = train_imgs[:,:,9:574,:] # 图像裁剪 size=565*565
train_masks = train_masks[:,:,9:574,:] # 图像裁剪 size=565*565
data_consistency_check(train_imgs,train_masks) # 训练图像和金标准图像一致性检查
assert(np.min(train_masks)==0 and np.max(train_masks)==1) #金标准图像 2类 0-1 print
("\n train images/masks shape:") print (train_imgs.shape) print ("train images
range (min-max): " +str(np.min(train_imgs)) +' - '+str(np.max(train_imgs)))
print ("train masks are within 0-1\n") # 从整张图像中-随机提取-训练子块 patches_imgs_train,
patches_masks_train =
extract_random(train_imgs,train_masks,patch_height,patch_width,N_subimgs,inside_FOV)
data_consistency_check(patches_imgs_train, patches_masks_train) #
训练图像子块和金标准图像子块一致性检查 print ("\n train PATCHES images/masks shape:") print
(patches_imgs_train.shape) print ("train PATCHES images range (min-max): " +
str(np.min(patches_imgs_train)) +' - '+str(np.max(patches_imgs_train))) return
patches_imgs_train, patches_masks_train
随机提取子块:
# 训练集图像 随机 提取子块 def extract_random(full_imgs,full_masks, patch_h,patch_w,
N_patches, inside=True): if (N_patches%full_imgs.shape[0] != 0): #
检验每张图像应该提取多少块 print "N_patches: plase enter a multiple of 20" exit() assert
(len(full_imgs.shape)==4 and len(full_masks.shape)==4) # 张量尺寸检验 assert
(full_imgs.shape[1]==1 or full_imgs.shape[1]==3) # 通道检验 assert
(full_masks.shape[1]==1) # 通道检验 assert (full_imgs.shape[2] ==
full_masks.shape[2] and full_imgs.shape[3] == full_masks.shape[3]) # 尺寸检验
patches = np.empty((N_patches,full_imgs.shape[1],patch_h,patch_w)) # 训练图像总子块
patches_masks = np.empty((N_patches,full_masks.shape[1],patch_h,patch_w)) #
训练金标准总子块 img_h = full_imgs.shape[2] img_w = full_imgs.shape[3] patch_per_img =
int(N_patches/full_imgs.shape[0]) # 每张图像中提取的子块数量 print ("patches per full
image: " +str(patch_per_img)) iter_tot = 0 # 图像子块总量计数器 for i in
range(full_imgs.shape[0]): # 遍历每一张图像 k=0 # 每张图像子块计数器 while k <patch_per_img:
x_center = random.randint(0+int(patch_w/2),img_w-int(patch_w/2)) # 块中心的范围
y_center = random.randint(0+int(patch_h/2),img_h-int(patch_h/2)) if
inside==True: if
is_patch_inside_FOV(x_center,y_center,img_w,img_h,patch_h)==False: continue
patch = full_imgs[i,:,y_center-int(patch_h/2):y_center+int(patch_h/2),
x_center-int(patch_w/2):x_center+int(patch_w/2)] patch_mask =
full_masks[i,:,y_center-int(patch_h/2):y_center+int(patch_h/2),
x_center-int(patch_w/2):x_center+int(patch_w/2)] patches[iter_tot]=patch #
size=[Npatches, 3, patch_h, patch_w] patches_masks[iter_tot]=patch_mask #
size=[Npatches, 1, patch_h, patch_w] iter_tot +=1 # 子块总量计数器 k+=1 # 每张图像子块总量计数器
return patches, patches_masks
数据一致性检查函数:
# 训练集图像 和 金标准图像一致性检验 def data_consistency_check(imgs,masks):
assert(len(imgs.shape)==len(masks.shape)) assert(imgs.shape[0]==masks.shape[0])
assert(imgs.shape[2]==masks.shape[2]) assert(imgs.shape[3]==masks.shape[3])
assert(masks.shape[1]==1) assert(imgs.shape[1]==1 or imgs.shape[1]==3)
1.2 训练金标准改写成Une输出形式
# 将金标准图像改写成模型输出形式 def masks_Unet(masks): # size=[Npatches, 1, patch_height,
patch_width] assert (len(masks.shape)==4) assert (masks.shape[1]==1 ) im_h =
masks.shape[2] im_w = masks.shape[3] masks =
np.reshape(masks,(masks.shape[0],im_h*im_w)) # 单像素建模 new_masks =
np.empty((masks.shape[0],im_h*im_w,2)) # 二分类输出 for i in range(masks.shape[0]):
for j in range(im_h*im_w): if masks[i,j] == 0: new_masks[i,j,0]=1 # 金标准图像的反转
new_masks[i,j,1]=0 # 金标准图像 else: new_masks[i,j,0]=0 new_masks[i,j,1]=1 return
new_masks
2. 网络输出转换成图像子块
# 网络输出 size=[Npatches, patch_height*patch_width, 2] def pred_to_imgs(pred,
patch_height, patch_width, mode="original"): assert (len(pred.shape)==3) assert
(pred.shape[2]==2 ) # 确认是否为二分类 pred_images =
np.empty((pred.shape[0],pred.shape[1])) #(Npatches,height*width) if
mode=="original": # 网络概率输出 for i in range(pred.shape[0]): for pix in
range(pred.shape[1]): pred_images[i,pix]=pred[i,pix,1] #pred[:, :, 0] 是反分割图像输出
pred[:, :, 1]是分割输出 elif mode=="threshold": # 网络概率-阈值输出 for i in
range(pred.shape[0]): for pix in range(pred.shape[1]): if pred[i,pix,1]>=0.5:
pred_images[i,pix]=1 else: pred_images[i,pix]=0 else: print ("mode " +str(mode)
+" not recognized, it can be 'original' or 'threshold'") exit() #
改写成(Npatches,1, height, width) pred_images =
np.reshape(pred_images,(pred_images.shape[0],1, patch_height, patch_width))
return pred_images
3. 测试图像按顺序分块、预测子块重新整合成图像

3.1 测试图像分块
def get_data_testing_overlap(DRIVE_test_imgs_original, DRIVE_test_groudTruth,
Imgs_to_test, # 20 patch_height, patch_width, stride_height, stride_width):
test_imgs_original = load_hdf5(DRIVE_test_imgs_original) test_masks =
load_hdf5(DRIVE_test_groudTruth) test_imgs = my_PreProc(test_imgs_original)
test_masks = test_masks/255. test_imgs = test_imgs[0:Imgs_to_test,:,:,:]
test_masks = test_masks[0:Imgs_to_test,:,:,:] test_imgs =
paint_border_overlap(test_imgs, patch_height, # 拓展图像 可以准确划分 patch_width,
stride_height, stride_width) assert(np.max(test_masks)==1 and
np.min(test_masks)==0) print ("\n test images shape:") print (test_imgs.shape)
print ("\n test mask shape:") print (test_masks.shape) print ("test images
range (min-max): " +str(np.min(test_imgs)) +' - '+str(np.max(test_imgs))) #
按照顺序提取图像快 方便后续进行图像恢复(作者采用了overlap策略) patches_imgs_test =
extract_ordered_overlap(test_imgs,patch_height,patch_width,stride_height,stride_width)
print ("\n test PATCHES images shape:") print (patches_imgs_test.shape) print
("test PATCHES images range (min-max): " + str(np.min(patches_imgs_test)) +' -
'+str(np.max(patches_imgs_test))) return patches_imgs_test, test_imgs.shape[2],
test_imgs.shape[3], test_masks #原始大小
原始图像进行拓展填充:
def paint_border_overlap(full_imgs, patch_h, patch_w, stride_h, stride_w):
assert (len(full_imgs.shape)==4) #4D arrays assert (full_imgs.shape[1]==1 or
full_imgs.shape[1]==3) #check the channel is 1 or 3 img_h = full_imgs.shape[2]
#height of the full image img_w = full_imgs.shape[3] #width of the full image
leftover_h = (img_h-patch_h)%stride_h #leftover on the h dim leftover_w =
(img_w-patch_w)%stride_w #leftover on the w dim if (leftover_h != 0): #change
dimension of img_h tmp_full_imgs =
np.zeros((full_imgs.shape[0],full_imgs.shape[1],img_h+(stride_h-leftover_h),img_w))
tmp_full_imgs[0:full_imgs.shape[0],0:full_imgs.shape[1],0:img_h,0:img_w] =
full_imgs full_imgs = tmp_full_imgs if (leftover_w != 0): #change dimension of
img_w tmp_full_imgs =
np.zeros((full_imgs.shape[0],full_imgs.shape[1],full_imgs.shape[2],img_w+(stride_w
- leftover_w)))
tmp_full_imgs[0:full_imgs.shape[0],0:full_imgs.shape[1],0:full_imgs.shape[2],0:img_w]
= full_imgs full_imgs = tmp_full_imgs return full_imgs
按顺序提取图像子块:
# 按照顺序对拓展后的图像进行子块采样 def extract_ordered_overlap(full_imgs, patch_h,
patch_w,stride_h,stride_w): assert (len(full_imgs.shape)==4) assert
(full_imgs.shape[1]==1 or full_imgs.shape[1]==3) img_h = full_imgs.shape[2]
img_w = full_imgs.shape[3] assert ((img_h-patch_h)%stride_h==0 and
(img_w-patch_w)%stride_w==0) N_patches_img =
((img_h-patch_h)//stride_h+1)*((img_w-patch_w)//stride_w+1) # 每张图像采集到的子图像
N_patches_tot = N_patches_img*full_imgs.shape[0] # 测试集总共的子图像数量 patches =
np.empty((N_patches_tot,full_imgs.shape[1],patch_h,patch_w)) iter_tot = 0 for i
in range(full_imgs.shape[0]): for h in range((img_h-patch_h)//stride_h+1): for
w in range((img_w-patch_w)//stride_w+1): patch =
full_imgs[i,:,h*stride_h:(h*stride_h)+patch_h,w*stride_w:(w*stride_w)+patch_w]
patches[iter_tot]=patch iter_tot +=1 #total assert (iter_tot==N_patches_tot)
return patches
3.2 对于图像子块进行复原
# [Npatches, 1, patch_h, patch_w] img_h=new_height[588] img_w=new_width[568]
stride-[10,10] def recompone_overlap(preds, img_h, img_w, stride_h, stride_w):
assert (len(preds.shape)==4) # 检查张量尺寸 assert (preds.shape[1]==1 or
preds.shape[1]==3) patch_h = preds.shape[2] patch_w = preds.shape[3]
N_patches_h = (img_h-patch_h)//stride_h+1 # img_h方向包括的patch_h数量 N_patches_w =
(img_w-patch_w)//stride_w+1 # img_w方向包括的patch_w数量 N_patches_img = N_patches_h *
N_patches_w # 每张图像包含的patch的数目 assert (preds.shape[0]%N_patches_img==0
N_full_imgs = preds.shape[0]//N_patches_img # 全幅图像的数目 full_prob =
np.zeros((N_full_imgs,preds.shape[1],img_h,img_w)) full_sum =
np.zeros((N_full_imgs,preds.shape[1],img_h,img_w)) k = 0 #迭代所有的子块 for i in
range(N_full_imgs): for h in range((img_h-patch_h)//stride_h+1): for w in
range((img_w-patch_w)//stride_w+1):
full_prob[i,:,h*stride_h:(h*stride_h)+patch_h,w*stride_w:(w*stride_w)+patch_w]+=preds[k]
full_sum[i,:,h*stride_h:(h*stride_h)+patch_h,w*stride_w:(w*stride_w)+patch_w]+=1
k+=1 assert(k==preds.shape[0]) assert(np.min(full_sum)>=1.0) final_avg =
full_prob/full_sum # 叠加概率 / 叠加权重 : 采用了均值的方法 print final_avg.shape
assert(np.max(final_avg)<=1.0) assert(np.min(final_avg)>=0.0) return final_avg

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信