<>目标

拥有爬取大规模数据的能力

<>爬虫的作用

利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:

知乎:爬取优质答案,为你筛选出各话题下最优质的内容。
豆瓣: 优质的电影
淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。
安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。
拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。
雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。
股票信息:分析股价选股

数据采集是 数据清洗和分析挖掘的前提,爬虫是数据采集的手段之一。

<>语言的选择

<>java

httpclient体系

<>python


爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。

<>学习路径

一条平滑的、零基础快速入门的学习路径。

1.学习 Python 包并实现基本的爬虫过程
2.了解非结构化数据的存储
3.学习scrapy,搭建工程化爬虫
4.学习数据库知识,应对大规模数据存储与提取
5.掌握各种技巧,应对特殊网站的反爬措施
6.分布式爬虫,实现大规模并发采集,提升效率

<>学习 Python 包并实现基本的爬虫过程

大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。

Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath
开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

如果你用过 BeautifulSoup,会发现 Xpath
要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事百科、腾讯新闻等基本上都可以上手了。

当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。

需要掌握的内容

1、基础知识–网页前端的三要素是HTML+CSS+JavaScript,其中HTML中有网页大量的信息,因此爬虫主要是抓取和解析网页的HTML。

2、requests库

3、提交请求–post put get等 headers

4、响应内容–response

5、BeautifulSoup

6、 BeautifulSoup使用方法

7、Selenium+PhantomJS(自动化测试工具)

Selenium是一个用于Web应用程序测试的工具,同时我们可以使用它来模拟真实浏览器对URL进行访问从而对网页进行爬取。

Selenium的往往要配合PhantomJS使用


Selenium+PhantomJS可以抓取那些使用JS加载数据的网页。你可以试着使用requests去抓取B站首页,你会发现,你抓取不到那些具体的视频名称及链接,但是我们可以通过以下代码抓取
from selenium import webdriver driver = webdriver.PhantomJS()
driver.get('https://www.bilibili.com') html = driver.page_source
<>了解非结构化数据的存储

爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。

开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。

当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas
包的基本用法来做数据的预处理,得到更干净的数据。

<>学习 scrapy,搭建工程化的爬虫

掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。

scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析
response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。

学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。

<>学习数据库基础,应对大规模数据存储

爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。

MongoDB
可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。

因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。

<>掌握各种技巧,应对特殊网站的反爬措施

当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。

遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。

往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了。

<>分布式爬虫,实现大规模并发采集

爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。

分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。

Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。

所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。


你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。

<>参考链接

转载案例一:https://cloud.tencent.com/developer/article/1087487
<https://cloud.tencent.com/developer/article/1087487>

系统体系的学习: https://www.kancloud.cn/xmsumi/pythonspider/160078
<https://www.kancloud.cn/xmsumi/pythonspider/160078>

例子参考二:http://yshblog.com/blog/148 <http://yshblog.com/blog/148>

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信