出自:https://blog.csdn.net/virus2014/article/details/52274849
<https://blog.csdn.net/virus2014/article/details/52274849>



定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数T(n)称为这一算法的“时间复杂性”。

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。


我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。

此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是 最佳算法。

“大O记法”:在这种描述中使用的基本参数是 
n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是
O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于
f(n)的速度增长。


这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的
O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

O(1)
Temp=i;i=j;j=temp;

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n^2)

2.1. 
交换i和j的内容
sum=0; (一次) for(i=1;i<=n;i++) (n次 ) for(j=1;j<=n;j++)(n^2次 ) sum++; (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)
2.2.
for (i=1;i<n;i++) { y=y+1; ① for (j=0;j<=(2*n);j++) x++; ② }
解: 
语句1的频度是n-1 
语句2的频度是(n-1)*(2n+1)=2n^2-n-1 
f(n)=2n^2-n-1+(n-1)=2n^2-2 
该程序的时间复杂度T(n)=O(n^2).

O(n)

2.3.
a=0; b=1; ① for(i=1;i<=n;i++){ ② s=a+b;    ③ b=a;     ④ a=s;     ⑤ }
解:语句1的频度:2, 
语句2的频度:n, 
语句3的频度: n-1, 
语句4的频度:n-1, 
语句5的频度:n-1, 
T(n)=2+n+3(n-1)=4n-1=O(n).

O(log2n) 
2.4.
i=1; ① while (i<=n) i=i*2; ②
解: 语句1的频度是1, 
设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=log2n 
取最大值f(n)=log2n, T(n)=O(log2n )

O(n^3)

2.5.
for(i=0;i<n;i++) { for(j=0;j<i;j++) { for(k=0;k<j;k++) x=x+2; } }
解:当i=m, 
j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,…,m-1 ,
所以这里最内循环共进行了0+1+…+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了:
0+(1-1)*1/2+…+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).

我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细
地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。

下面是一些常用的记法: 
访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取
O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对元素相乘并加到一起,所有元素的个数是n^2。 
指数时间算法通常来源于需要求出所有可能结果。例如,n个元
素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在
这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题”
),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。

计算方法 <>


1.一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。

一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。


2.一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))。随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。

在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n
,nLog2n ,n的平方,n的三次方,2的n次方,n!
),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。

3.常见的时间复杂度

按数量级递增排列,常见的时间复杂度有:常数阶O(1), 对数阶O(log2n), 线性阶O(n), 线性对数阶O(nlog2n), 平方阶O(n^2),
立方阶O(n^3),…, k次方阶O(n^k), 指数阶O(2^n) 。

其中,

1.O(n),O(n^2), 立方阶O(n^3),…, k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度……

2.O(2^n),指数阶时间复杂度,该种不实用

3.对数阶O(log2n), 线性对数阶O(nlog2n),除了常数阶以外,该种效率最高

例:算法:
for(i=1;i<=n;++i) { for(j=1;j<=n;++j) { c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2 for
(k=1;k<=n;++k) c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3 } }
则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级 
则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c 
则该算法的 时间复杂度:T(n)=O(n^3)

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信