优化一览图

优化

 笔者将优化分为了两大类:软优化和硬优化。软优化一般是操作数据库即可;而硬优化则是操作服务器硬件及参数设置。

1、软优化

1)查询语句优化

首先我们可以用EXPLAIN或DESCRIBE(简写:DESC)命令分析一条查询语句的执行信息。

例:
DESC SELECT * FROM `user`
显示:

 

其中会显示索引和查询数据读取数据条数等信息。

2)优化子查询


在MySQL中,尽量使用JOIN来代替子查询。因为子查询需要嵌套查询,嵌套查询时会建立一张临时表,临时表的建立和删除都会有较大的系统开销,而连接查询不会创建临时表,因此效率比嵌套子查询高。

3)使用索引

索引是提高数据库查询速度最重要的方法之一,使用索引的三大注意事项包括:

* LIKE关键字匹配'%'开头的字符串,不会使用索引;
* OR关键字的两个字段必须都是用了索引,该查询才会使用索引;
* 使用多列索引必须满足最左匹配。
4)分解表

对于字段较多的表,如果某些字段使用频率较低,此时应当将其分离出来从而形成新的表。

5)中间表

对于将大量连接查询的表可以创建中间表,从而减少在查询时造成的连接耗时。

6)增加冗余字段

类似于创建中间表,增加冗余也是为了减少连接查询。

7)分析表、检查表、优化表

分析表主要是分析表中关键字的分布;检查表主要是检查表中是否存在错误;优化表主要是消除删除或更新造成的表空间浪费。

分析表: 使用 ANALYZE 关键字,如ANALYZE TABLE user

 

* Op: 表示执行的操作;
* Msg_type: 信息类型,有status、info、note、warning、error;
* Msg_text: 显示信息。
检查表: 使用 CHECK关键字,如CHECK TABLE user [option]。 option 只对MyISAM有效。共五个参数值:

* QUICK: 不扫描行,不检查错误的连接;
* FAST: 只检查没有正确关闭的表;
* CHANGED: 只检查上次检查后被更改的表和没被正确关闭的表;
* MEDIUM: 扫描行,以验证被删除的连接是有效的,也可以计算各行关键字校验和;
* EXTENDED: 最全面的的检查,对每行关键字全面查找。
优化表: 使用OPTIMIZE关键字,如OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE user;

LOCAL|NO_WRITE_TO_BINLOG都是表示不写入日志,优化表只对VARCHAR、BLOB和TEXT有效,通过OPTIMIZE
TABLE语句可以消除文件碎片,在执行过程中会加上只读锁。

2、硬优化

1)硬件三件套

* 配置多核心和频率高的cpu,多核心可以执行多个线程;
* 配置大内存,提高内存,即可提高缓存区容量,因此能减少磁盘I/O时间,从而提高响应速度;
* 配置高速磁盘或合理分布磁盘:高速磁盘提高I/O,分布磁盘能提高并行操作的能力。
2)优化数据库参数

优化数据库参数可以提高资源利用率,从而提高MySQL服务器性能。MySQL服务的配置参数都在my.cnf或my.ini,下面列出性能影响较大的几个参数:

* key_buffer_size: 索引缓冲区大小;
* table_cache: 能同时打开表的个数;
* query_cache_size和query_cache_type:
前者是查询缓冲区大小,后者是前面参数的开关,0表示不使用缓冲区,1表示使用缓冲区,但可以在查询中使用SQL_NO_CACHE表示不要使用缓冲区,2表示在查询中明确指出使用缓冲区才用缓冲区,即SQL_CACHE;
* sort_buffer_size: 排序缓冲区。
3)分库分表

因为数据库压力过大,首先一个问题就是高峰期系统性能可能会降低,因为数据库负载过高对性能会有影响。

另外一个,压力过大把你的数据库给搞挂了怎么办?


所以此时你必须得对系统做分库分表+读写分离,也就是把一个库拆分为多个库,部署在多个数据库服务上,这时作为主库承载写入请求。然后每个主库都挂载至少一个从库,由从库来承载读请求。

 

4)缓存集群

如果用户量越来越大,此时你可以不停的加机器,比如说系统层面不停加机器,就可以承载更高的并发请求。

然后数据库层面如果写入并发越来越高,就扩容加数据库服务器,通过分库分表是可以支持扩容机器的,如果数据库层面的读并发越来越高,就扩容加更多的从库。

但是这里有一个很大的问题:

数据库其实本身不是用来承载高并发请求的,所以通常来说,数据库单机每秒承载的并发就在几千的数量级,而且数据库使用的机器都是比较高配置,比较昂贵的机器,成本很高。

如果你就是简单的不停的加机器,其实是不对的。


所以在高并发架构里通常都有缓存这个环节,缓存系统的设计就是为了承载高并发而生。单机承载的并发量都在每秒几万,甚至每秒数十万,对高并发的承载能力比数据库系统要高出一到两个数量级。

你完全可以根据系统的业务特性,对那种写少读多的请求,引入缓存集群。

具体来说,就是在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求。这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。

结语


 一个完整而复杂的高并发系统架构中,一定会包含各种复杂的自研基础架构系统和各种精妙的架构设计,因此一篇小文顶多具有抛砖引玉的效果。但是总得来看,数据库优化的思想差不多就这些了。希望能对大家有所帮助。这边整理了一些有关Java架构的资料,包括(Dubbo、Redis、设计模式、Netty、zookeeper、Spring
cloud、分布式、高并发等)可以免费提供给大家,大家如果需要的话可以:【点击进入】我的主页 <https://www.cnblogs.com/wuxj/>,
右侧有获取方式!

友情链接
KaDraw流程图
API参考文档
OK工具箱
云服务器优惠
阿里云优惠券
腾讯云优惠券
华为云优惠券
站点信息
问题反馈
邮箱:[email protected]
QQ群:637538335
关注微信